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A 4.29nJ/pixel Stereo Depth Coprocessor With
Pixel Level Pipeline and Region Optimized
Semi-Global Matching for IoT Application

Pingcheng Dong, Zhuoyu Chen , Zhuoao Li , Yuzhe Fu , Lei Chen , and Fengwei An , Member, IEEE

Abstract— The semi-global matching (SGM) algorithm in
stereo vision is a well-known depth-estimation method since it
can generate dense and robust disparity maps. However, the real-
time processing and low power dissipation, the specifications
of the Internet-of-Thing (IoT) applications, are challenging for
their computational complexity. In this paper, we propose a
hardware-oriented SGM algorithm with pixel-level pipeline and
region-optimized cost aggregation for high-speed processing and
low hardware-resource usage. Firstly, the matching costs in
a region are integrated with an optimization strategy to sig-
nificantly reduce memory usage and improve the processing
speed of the cost aggregation. Then, a two-layer parallel two-
stage pipeline (TPTP) architecture, which enables pixel-level
processing, is designed to calculate two directions (0◦ and
135◦) aggregation to further solve the crucial computational
bottleneck of the SGM algorithm. Finally, the architecture is
demonstrated on a low-cost XILINX Spartan-7 device and an
advanced Stratix-V FPGA device for VGA (640 × 480) depth
estimation. The experimental results show that the proposed
architecture with compact hardware architecture also ensures
accuracy. The pixel-level pipeline architecture enables a process-
ing speed of 355 frames per second (fps) at 109MHz on the
Spartan-7 FPGA device and 508 fps at 156MHz on the Stratix-V
FPGA. Besides, the coprocessor respectively achieves an energy
efficiency of 4.74 nJ/pixel with a power dissipation of 517mW
and 4.29nJ/pixel with a power dissipation of 669mW on these
two FPGAs.

Index Terms— Regional optimization, stereo vision, semi-global
matching, real-time, FPGA.

I. INTRODUCTION

B INOCULAR stereo vision is an important branch of
computer vision [1], [2]. It is a technique to recover depth

information from planar images by simulating the principle of
human visual perception [3], [4]. Thus, the stereo matching
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technique has been widely used in a variety of application
areas, including industrial production automation [5], mobile
robot [6], self-driving cars (distance detection, navigation) [7],
object detection [8], remote sensing image analysis, etc.

As for the depth estimation by stereo vision, the semi-
global matching (SGM) [9] has been widely highlighted for
its fast speed and robustness [10] in comparison to the global
matching. However, the global matching algorithms consume
enormous resources because their energy function is global.
A typical SGM contains the matching cost computation,
the cost aggregation, the disparity computation, the disparity
refinements, and the depth transformation.

The Census Transform method for matching cost gen-
eration [11] is an image operator that associates a binary
string to each pixel of a grayscale image for expressing the
visual correspondence problems [12]. The cost aggregation
essentially aims to optimize the matching costs of pixels in
a few directions. The depth can be estimated by the winner-
take-all (WTA) method to search minimum aggregated match-
ing costs [13]. The complexity of the SGM mainly increases
with disparity search range and cost aggregation paths. [14].
How to accelerate the SGM is an attractive research topic for
real-time processing. Meanwhile, the Internet of Things (IoT)
applications specified low power dissipation [15].

In this work, we propose a region-optimized SGM algorithm
with pixel-level pipeline architecture for solving the computa-
tional bottleneck of the cost aggregation. Thus, the designed
stereo-depth coprocessor can be applied in IoT edge devices
with compact hardware architecture. The contribution of this
work can be summarized as follows:

A) The region-optimized cost aggregation adopts a rep-
resentative matching cost determined by an optimized
strategy. In the case of the region size with four matching
costs, the hardware-resource and memory usage can be
saved over 84% comparing with other works, and the
average accuracy loss is less than 1% in comparison
to the original SGM. Furthermore, only the cost aggre-
gation paths with the combination of 0◦ and 135◦ can
achieve higher accuracy than four paths and eight paths.

B) A two-layer parallel two-stage pipeline (TPTP) archi-
tecture can parallel compute the cost aggregation of
the 128-disparity search range. Hence, the pixel-level
pipeline enables the simultaneous calculation of two
directions aggregation and the speed synchronization
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to the stream of the image sensor. The proposed
coprocessor can achieve a dynamic power dissipation
of 63mW at 24MHz and 78 VGA (640 × 480)-frames
per second (fps) for the IoT low-power scenarios. Mean-
while, the dynamic power dissipation of 517mW and
a processing speed of 355 fps at the max working
frequency of 109MHz on a low-cost XILINX Spartan-7
FPGA device are for high-speed application. In addi-
tion, the architecture implemented on the advanced Intel
Stratix-V device can reach a maximum working fre-
quency of 156MHz, a speed of 508fps with dynamic
power dissipation of 669mW.

C) For satisfying the IoT applications, the developed archi-
tecture is so compact that it can be easily implemented
on a low-cost XILINX Spartan-7 FPGA device. More-
over, the hardware-resource usage of the proposed work
is lowest than the state-of-art works under the same
disparity search range and image resolution.

The remains of this paper are organized as follows.
Section II introduces the related works. Section III illustrates
the proposed region-optimized SGM algorithm. Section IV
elaborates on the implementation of the hardware architecture.
Section V presents the experimental results with accuracy,
hardware-resource usage, and performance. Finally, we con-
clude in Section VI.

II. RELATED WORK

Accelerating stereo matching algorithms is very attrac-
tive in the past decades, but designing a compact and
resource-friendly hardware architecture is still a challenge.
Thus, accelerations based on CPUs, GPUs, FPGAs, and
ASICs have been implemented to solve numerous critical
issues, including high computational complexity, large stor-
age requirement, extensive data access, and long processing
latency.

Seki and Pollefeys [16] proposed an innovative convolu-
tional neural network in the SGM algorithm on GPU, which
provides learned penalties for every pixel. They implemented
their system with Torch7 on NVIDIA Titan X and achieved
ultra-high accuracy in the final depth map, with less than
3% Out-Noc error. However, 250W power dissipation is very
difficult to apply IoT edge devices with GPUs. Additionally,
Cambuim et al. [17] proposed a stereo matching system based
on two distinct heterogeneous architectures (CPU and FPGA)
and achieved a frame rate of 25 fps for the disparity maps
processing XGA video (1024×768) with 256 disparity levels.
However, the resource consumption was so high that it was
only applicable to the advanced FPGA platforms with a large
scale of logic elements.

As for standalone FPGA, in [18], an external DRAM was
involved for the 128-disparity search range. They attained
a processing speed of 324 fps and the power dissipation
of 2.313W with the maximum frequency of 133MHz on
the Virtex-5 FPGA platform. Jin et al. [19] proposed a fully
pipelined stereo vision system with additional sub-pixel accu-
racy on Virtex-4 that could attain 230 fps with 93.1MHz
and 64 disparity range for XGA (1024 × 768) video, but

the resource consumption is high, which affects the power
efficiency and hardware compactness. A depth estimation
architecture based on guided image filtering was designed
in [20] on the same FPGA platform to process 60 fps FHD
(1920 × 1080) video. Meanwhile, on the advanced Virtex-7
FPGA [21], the power dissipation was only 172mW for XGA
(1024×768) with a 64-disparity search range. A stereo vision
system based on SGM with scalable resolutions and disparity
search range was implemented on a low-cost FPGA platform,
i.e., XILINX Spartan-7, for VGA (640 × 480) resolution with
a 128-disparity search range. They attained a processing speed
of 324 fps with a maximum frequency of 100 MHz [22].
Besides, in [23], image-guided depth inference, upsampling,
and octave search range sampling were adopted for wide-
depth-range scenes to save computation. The processor was
implemented on XILINX ZC706 with a 128-disparity search
range, 384mW, and 95pJ energy efficiency for 1920 × 1088
resolution, but the processing speed was 54MHz and the
memory usage 329Kb is high. In [24], a non-iterative Patch
Match and separable weighted median filtering algorithm was
proposed to reduce the computational complexity of stereo
matching and achieved 60 fps in a 128-disparity search range
for FHD video on the Kintex-7 FPGA platform.

Regarding the solutions in Application Specific Integrated
Circuit (ASIC), Chen et al. developed a tile-based belief
propagation algorithm and utilized five views to improve
the quality of data cost. The hardware architecture with a
64-disparity search range and 32 × 32 tiles in 40nm CMOS
technology could reach 30 fps and 611mW for FHD resolution
at 215MHz [25]. In [26], Lee et al. utilized a tile-based SGM
architecture with a task-level pipeline which can reduce the
external memory bandwidth by 85.5%. Furthermore, in [27],
an 8 × 8 tile-based SGM processor with a 64-disparity
search range was implemented in 65nm CMOS technology
for processing 40 fps 640 × 360-resolution stereo video.
The tile-based method saved 85% external memory with a
power dissipation of only 288mW at 250MHz. The overall
system in 65nm CMOS technology could run at 250MHz
with 582mW for HD (1280 × 720)-resolution stereo video on
the driving mode. The proposed processor in 40nm CMOS
technology could produce 30 fps FHD depth maps at 170MHz
with a power dissipation of 836mW and attained a 7% error
rate under a 512-disparity search range (7bit for -disparity
search range and 2bit for fraction) [28]. Recently, Li Z. et al.
proposed a block-based SGM, which partitioned the image
into several overlapped 50 × 50 pixels, achieved a 95.4%
memory reduction for an FHD resolution. Then, they designed
a neighbor-guided SGM fabricated in 28nm CMOS technology
for dense stereo depth. It attained a processing speed of 30 fps
at 180MHz and power dissipation of 760mW for 1920×1080-
resolution stereo video under a 176-disparity search range [29].

III. THE PROPOSED SGM WITH REGION-OPTIMIZED

COST AGGREGATION ALGORITHM

A. Overall Description

In this work, we propose a regional-optimized SGM (rSGM)
to solve the computational problem of cost aggregation.
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Fig. 1. Overall framework of the proposed rSGM with region-optimized cost aggregation.

Fig. 2. Example of regional optimization with Np = 8, n = 4 for a pixel
P (x, y).

As shown in Fig. 1, the proposed rSGM consists of four main
modules: a rectification module, an initial matching cost com-
putation module, a region-optimized cost aggregation module,
and a post-processing module. The rectification, known as
image transformation, is to obtain two rectified stereo images.
The Initial matching cost calculation provides cost volume
for the entire image under the disparity-search range. Then,
the region-optimized cost aggregation optimizes the initial
matching costs in a predefined region and aggregates in a
pre-defined number of paths. Finally, the disparity is chosen
by the WTA strategy, and several post-processing techniques
are leveraged to further refine the disparity map and obtain
the depth.

B. Rectification

In the stereo matching algorithm, the disparity of the pixel
pair between the base and matching images is computed
by searching the most similar pair horizontally. Therefore,
the image pair must be rectified to set the corresponding pixels
in the same line. However, a binocular camera system always
has non-ideal image pairs caused by the camera distortion and
baseline deviation.

To obtain a pair of rectified images, we need to rotate and
translate images. In this work, an image transformation is
applied to ensure the pair is on the same spatial plane and
the heights are the same.

The image transformation is expressed by (1), where
(x/z, y/z) is the coordinates of a pixel in the rectified images
and (u, v) is the coordinate of the input image.⎡

⎣ x
y
z

⎤
⎦ = Hr

⎡
⎣ u

v
1

⎤
⎦ , (1)

here Hr is established based on the pre-measured parameters
by the calibration process of two cameras. In the calibration
with a MATLAB toolbox, multiple pairs of pixels on a
calibration checkboard are selected. These pixels pairs are
captured in different spatial positions to obtain the rotation
matrix R and translation matrix T , which determine the spatial
relationship of the two cameras’ position and orientation in a
specific three-dimensional space. Then the Hr can be obtained
by R × T .

C. Initial Matching Cost With Census Transform Algorithm

The Census Transform algorithm in [30] relies on the
relative order of the gray value of the local area, which
overcomes the error caused by the camera brightness deviation,
improves the system robustness [31], and has low computa-
tional complexity. The main idea of the Census Transform
algorithm is using a string of bits, which is called the Cen-
sus transformation code, to represent the pixel window. The
mapping relationship is expressed by (2), with ⊗ denoting a
concatenation, P is a certain pixel in the image, W is the
matching window centered on P(x, y), which is generally a
3 × 3 or 5 × 5 square window.

R (P (x, y)) = ⊗
(i, j )�W

ξ (P (x, y) , P (x + i, y + j))

ξ
�

p, p�� =
�

1, p < p�

0, p ≥ p�.
(2)
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Generally, a similarity between two pixels of the base
and matching image is calculated and those with the high-
est correlation are assigned as corresponding. In this work,
the Hamming distance is used to calculate the similarity after
obtaining the Census transform codes of the pixels in the left
and right images while the right image is supposed as the base.
The Hamming distance is also called the initial matching cost
and the smaller distance represents the greater the similarity.

The local matching cost C (P (x, y), d) is calculated as (3),
where x and y represent the horizontal axis and vertical axis
respectively. P(x, y) is a pixel located at (x, y) in the base
image, e.g., the right image is defined as the base image and
P(x+d,y) is the candidate pixel in the left image, RL and RR

are the respective Census transform codes in the left and right
images. For d , whose range is [0, Np − 1], is a certain
distance value between the base pixel and the candidate pixels
in the matching image. Finally, the computation of the initial
matching costs is conducted along N p candidate pixels.

C (x, y, d) =
	

H (RR
�
P(x,y)

�
, RL(P(x+d,y))). (3)

D. Regional Optimization and Cost Aggregation

Since the traditional SGM algorithm [32] aggregates the
initial matching cost in different directions, the disparity search
range and the cost aggregation paths are two main factors to
the computational cost.

In this work, regional optimization is a strategy that treats
a pre-defined number of pixels as a region. And then, the cost
of this region for aggregation is represented by the minimum
initial matching cost inside. The stereo disparity is estimated
horizontally for every pixel in the base image within a disparity
search range N p in the matching image. Thus, each pixel must
repeat N p × Path times for aggregation where Path is the
number of aggregation paths. This certainly leads not only to
high computational resources but also to huge memory for the
subsequent calculation. In the case of surfaces with no texture
or repetitive colors such as white walls and dark shadow,
the stereo-depth estimations may yield a lot of redundant
calculations of the cost aggregation.

The proposed rSGM is to decrease the number of the initial
matching costs by a minimum search strategy among a region
as in (4):

ROC (x, y, a) = {min (C (x, y, (a, 0)) , . . . ,

C (x, y, (a, n − 1))) , min p}, (4)

where a is the index of the cost region within [0, N p
n − 1],

ROC(x, y, a) represents the region-optimized cost (ROC) of
the region a, C (x, y, (a, 0)) , . . . , C (x, y, (a, n − 1)) repre-
sents n initial matching costs in the region a, min p is the
position of the minimal initial matching cost. In particular,
min p is associated with the least significant �log2 n� bits of
the minimum matching cost as the regional cost.

Taking Np = 8 and n = 4 for a pixel P (x, y) as an example
in Fig. 2, each value in the cube stands for the initial matching
costs of P (x, y) with the disparity search range from 0 to 7.
Subsequently, every 4 consecutive initial matching costs of

P (x, y) are considered as a region. The dark gray cube is
denoting the minimum of them. Next, the position flag of each
region is concatenated to the least significant 2 (�log2 4�) bits
of the cost. Finally, 8 initial matching costs are represented
by 2 region-optimized costs. Therefore, the large amount of
computation of the aggregation can be significantly reduced
through optimizing N p initial matching costs of each pixel
to N p

n region-optimized costs. Thus, the larger n may lead
to a higher error rate but lower resource consumption. Here,
n can be scalable according to the accuracy requirement of an
application.

The traditional SGM algorithm combines the global match-
ing algorithm with the dynamic programming approach and
simplifies the evaluation of the global energy function with
the fixed directions’ cost aggregation. In this work, the initial
matching costs have been optimized to the regional costs
through regional optimization. Consequently, for the direc-
tion r , the path cost is computed as in (5), where Lr (p, a)
represents the path costs for pixel point p in region a in
direction r , C (p, a) describes the regional cost for pixel p,
and two penalties P1 and P2 are separately responsible for
disparity changes and disparity discontinuities (P1 is always
less than P2). The last term avoids steadily increasing path
costs.

Lr (p, a) = C (p, a) + min[Lr (p − 1, a) , Lr (p − 1, a + 1)

+ P1, min
i∈[0,Np−1] Lr (p − 1, i) + P2]

− min
i∈[0,Np−1] Lr (p − 1, i). (5)

The final optimized costs are the sum of all the aggregation
costs in different paths. The original SGM utilizes the two-scan
method [28], which contains forward and backward scans,
to perform eight-path cost aggregation. The paths in directions
0◦, 45◦, 90◦, and 135◦ belong to the forward scan while the
paths in 180◦, 225◦, 270◦, and 315◦ directions belong to the
backward scan. Generally, the optimal choice of aggregation
paths differs in various SGM algorithms. Through our error
rate analysis, the best choice of the paths of the proposed
rSGM is the combination of 0◦ and 135◦ which can further
solve the computational problem of the cost aggregation and
save the hardware resource.

After the aggregation, the region with the minimum opti-
mized cost is determined by the WTA strategy. Then, the real
disparity disp (P(x, y)) of a pixel P (x, y) can be restored
from (6), where n is the number of costs in a certain region,
R is the region of the minimum optimized cost and Rp is the
corresponding position flag.

disp (P(x, y)) = R × n + Rp . (6)

E. Post-Processing

Post-Processing is crucial for obtaining dense and high-
accuracy depth maps. We utilize left-right check, hole filling,
and median filter to further refine the parallax. The left-right
check approach is up to detect the occluded and badly matched
pixel pairs through (7), where D (P (x, y)) means the validity
of pixel P (x, y) located at (x, y), dR is the value of the
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Fig. 3. Images rectification structure with resource-saving and pixel-level
pipeline structure.

right disparity map at (x, y) while dL is the value of the left
disparity map at (x + dR, y) ,

D (P (x, y)) =
�

valid, i f |dL − dR | < 1

invalid, otherwi se.
(7)

In the hole filling, the smaller value of the two nearest
horizontal valid pixels of the invalid pixel is chosen to be
the disparity. Then, an 11 × 11 median filter is utilized to
obtain the final dense disparity map. Finally, the depth of
a pixel P(x, y) can be calculated according to (8), where
depth(P(x, y)) is the depth of pixel P(x, y), f is the
pre-calibrated focal length, B is the baseline, c is the size
of a pixel, and Z is the distance (depth) of the point from the
camera.

depth(P(x, y)) = f B

cZ
. (8)

IV. PIXEL-LEVEL PIPELINE ARCHITECTURE FOR

REGION-OPTIMIZED SGM

A. Image Rectification With Pixel-Level Pipeline Structure

As described above, the rectification module is performed
based on the transform matrix obtained by camera calibra-
tion. A resource-saving and pixel-level pipeline architecture
is proposed as shown in Fig. 3. The coordinate rectification
calculator takes the original pixel coordinates through the
pixel counter, which counts the pixel location by the input
sync signal, and calculates the rectified mapping coordinate,
as described in (1). The resulting coordinate can be larger or
smaller than the original coordinate due to the characteristics
of rectified mapping. Therefore, multiple dual-port SRAMs are
grouped to form an image-matrix buffer in which every pixel
has an adjustment range, where the range is the number of
pixels in the vertical direction and the horizontal direction.

However, the resulting coordinates are always not an integer.
The x_decimal and y_decimal represent the decimal part
of the resulting coordinates in the vertical and horizontal

Fig. 4. Fully-parallel Census transform architecture to compute the Census
codes with a pixel-level pipeline. The transform window size is 3 × 3 and the
disparity searching rang is Np . The post-processing of the left-right check is
also implemented with fully-parallel architecture.

directions. According to the decimal part of the resulting
coordinate, the address controller calculates the corresponding
four addresses to read four interpolation pixels from the
image matrix buffer to the bilinear interpolation (BI) module.
After receiving the pixels and decimal part of coordinates,
the BI module calculates the interpolation pixel and output
the rectified image pixel streams.

B. Fully-Parallel Census Transform With Pixel-Level Pipeline

Each pixel in base and matching image, i.e., the right and
left image in this work, needs to search in another image
within the disparity range Np . In this work, a fully parallel
architecture for Census Transform is developed to compute
the initial matching costs of pixels in the base and matching
images which are shown in Fig. 4. The full parallelism
means each pixel in the right image has Np arithmetic units
(Window_L 0 to Window_L Np −1) for parallel computing the
initial matching costs of the pixel in the left image.

In addition, Np arithmetic units (Window_R 0 to
Window_R Np − 1) are implemented for the post-processing
of the left-right check since the base image exchanges between
the right and left image.

At first, two linebuffer_rights with the width of the image
width W and two linebuffer_lefts with W − N p + 1 width
together with Np − 1 windows are utilized to buffer the
data of two rows of the base and matching images. Then,
the computed Np × 2 Census codes are the left and right
bit_seq in the hamming transform module. Next, Np × 2
Hamming distances are computed parallelly through XOR
operation on each left and right bit_seq.
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Fig. 5. Two-layer parallel two-stage pipeline (TPTP) structure to process the aggregation in two directions (According the error analysis, 0◦ and 135◦ can
produce better depth result than four or eight directions). Here, the disparity searching range is Np .

C. Regional Optimization and Cost Aggregation With
Two-Layer Parallel Two-Stage Pipeline Structure

Each pixel yielding Np initial matching costs lead to
high computational complexity and large memory space for
the cost aggregation. In this work, the regional optimization
is leveraged to optimize the initial matching costs to the
regional costs to reduce the resource consumption and improve
the compactness of the hardware architecture. The regional
optimization module in Fig. 5 firstly compresses Np initial
matching costs to Np /n, as the example in Fig. 5 where the n
is 4 (Costi , . . . , Costi+3(i = 0, 4, 8, . . . , Np − 4)).

As described in Section II part D, the cost aggregation of
the traditional SGM has forward and backward scans. The
backward scan is opposite to the direction of the pixel stream.
Thus, it is inevitable to cache the aggregated results of the
forward scan in a frame buffer and then transfer them with
the remaining four paths’ results when the backward scan is
accomplished. Therefore, the memory requirement is (image
size) × (disparity search range) × (bit width of the aggregated
cost) × (number of forwarding paths) × 2 where 2 is used for
the left-right check for occlusion handling. Finally, 188MB is
needed for 640 × 480 resolution, 128-disparity search range
and 563MB is required for 1280 × 720 resolution.

To solve memory issue in eight-path aggregation, an 8 × 8
tile-based method is proposed in [26] which only buffers the
first of every eighth row and then reconstruct the remaining
data of the seven rows through forwarding aggregation in
each tile. This method reduced the external bandwidth by
62.3% with the sacrifice of a 43.8% increment in on-chip com-
putation. Besides, a block-based SGM algorithm partitioned
the image into several overlapping 50 × 50 blocks which

achieves 95.4% memory reduction for storing the forward scan
aggregation and suffers only 0.5% accuracy degradation [28].

Traditionally, aggregation is utilized to minimize the
2-dimensional energy function through multiple 1-dimensional
dynamic programming methods. From the experimental analy-
sis, we find that the path of 135◦ is equivalent to the combi-
nation of 180◦ and 90◦. As well as, 45◦ is equivalent to the
combination of 0◦ and 90◦. According to the error analysis,
it is observed that the best aggregation path for rSGM is the
combination of (0◦, 135◦) which is even better than four paths
and eight paths aggregation.

In this work, we propose a two-layer parallel two-stage
pipeline (TPTP) structure to process the aggregation in only
two directions (0◦, 135◦) as shown in Fig. 5. Since the pixel
follows the forward raster scan manner, the aggregation path
for 135◦ has a row-level data dependence but the aggregation
path for 0◦ has pixel-level data dependence. Thus, the FIFOs
for 135◦ aggregation are used to buffer the intermediate
aggregation of the last row while the FIFOs for 0◦ aggregation
store the ROCs to match the timing of these two paths.

In detail, the 0◦ region-optimized costs buffer is comprised
of 3 × Np/n 7-bit registers. For the 7-bit, the lowest two bits
record the relative position of the ROC and the highest five
bits record the value of the ROC . And Np/n FIFOs have
W -3 words, each of which is 7-bit. Because the position flag
of each region has already been recorded in the 0◦ submodule,
the bit precision for the 135◦ submodule is only 5 bit. In this
way, the memory usage to buffer the aggregated cost is
decreased to (image width) × ( disparit y range

n ) × (2 × bit
width of ROC + bit width of position flag) × 2. Finally,
only 0.0586MB and 0.117MB are respectively required for
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Fig. 6. Hardware implementation of post-processing based on pixel-level pipeline structure.

Fig. 7. Disparity images and percentage of bad pixels on the Middlebury V3 benchmark under σ = 3 in different-size region optimization.

resolution of 640×480 and 1280×720 under the 128-disparity
search range, n = 4 and 7-bit width for ROCs. The rSGM
achieves around 99.97% and 99.98% memory reduction.

Since the aggregation path for 135◦ has a row-level data
dependence but the aggregation path for 0◦ has a pixel-level
data dependence, the 0◦ aggregation path needs the ROCs of
the current pixel and the aggregation costs of the previous pixel
in the horizontal direction, the aggregation results of current
pixel are returned to the previous aggregation costs block of
the 0◦ aggregation module for aggregation of next pixel which
solves the dependencies in 0◦ direction. Here, the position
flag in the 0◦ aggregation module does not participate in the
calculation of the cost aggregation but is buffered temporally
for later disparity calculation.

As for the path of 135◦, the data dependence occurs when
the cost aggregation of the current pixel requires the previous
intermediate aggregation cost on the last row and the ROCs
on the same row. It can be well solved by conveying the
intermediate aggregation result in the 135◦ aggregation costs
shift registers to the previous aggregation costs unit while the
ROCs of the 135◦ region-optimized costs shift registers are
concurrently passed to the regional optimized costs unit.

D. Depth Estimation and Post-Processing

The depth map associated with the base image (the right
image) is determined by the disparity of a pixel and its
matched pixel with the minimum cost. As well, the depth map
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Fig. 8. Error rates of rSGM (Region size n is 4) in different combinations of aggregation directions without post-processing based on the Middlebury
3.0 benchmark under σ = 1, 2 and 3.

Fig. 9. Error rates of rSGM (Region size n is 4) in different combinations of aggregation directions with post-processing based on the Middlebury
3.0 benchmarck under σ = 1, 2 and 3.

TABLE I

COMPARISON OF THE ERROR RATE BETWEEN THE SGM AND RSGM WITH

DIFFERENT NUMBER OF PATHS ON THE MIDDLEBURY
3.0 AND KITTI 2015 DATASETS

that corresponds to the matching image (the left image) can
be determined from the same costs associated with the pixel
q of the base image (the right image) with the minimum cost.
The base and matching depth maps can handle the occlusions
according to the false matches by left-right check. The final
disparity is set to the minimum one if the disparity of a pixel
in the base image is different from its corresponding disparity
of this pixel in the matching image.

As shown in Fig. 6, the disparity is calculated by firstly sum-
ming up the 0◦ and 135◦ aggregation costs to attain the global
energy in range [0,

Np
n − 1]. Besides, a three-stage pipeline

is implemented to find the minimum value, i.e., the most
matching region. Then left-shift by n is to recover the disparity
back to the range [0, Np − 1].

Subsequently, two memory blocks with more than Np words
are used for the left-right check. Here, Db is the disparity of
the base image and Dm is the disparity of the matching image.
The Dm is found by adding Db and Db’s addresses together.

Finally, the left-right check is implemented by comparing Dm
and Db according to (7).

At last, the hole filling is utilized to replace the invalid pixel
with a suitable value by finding the minimum of two nearest
valid disparities in the 0◦ and 180◦ directions. We use two
LIFOs (last in first out) to find these two valid disparities.
In the scan for 0◦ direction, the value of the register REG1
will be set to register 0◦ last valid to record the most recent
disparity value. Then shift the value of REG1 to REG2. When
the disparity in REG1 is invalid, the value of REG2 is directly
set by register 0◦ last valid while keep the mark invalid
unchanged. Then, a LIFO is used to reverse the order of the
initial pixel stream for the computation of the 180◦ direction.
Finally, an 11 × 11 median filter using architecture in [33] is
employed to smooth the final disparity map.

V. EXPERIMENTAL RESULT

A. Accuracy Analysis

The accuracy of the depth estimation is evaluated on the
Middlebury V3 benchmark [34] which has 30 high-resolution
image pairs with challenging conditions, such as slight recti-
fication errors, different exposures, or different illuminations
between the left and the right images. The evaluation metric
in benchmark [10] is given by (9), where E is the accuracy of
a certain image, W is image width, H is image height, N is
W × H , dr (i, j) is the disparity obtained by the proposed
algorithm, dgt (i, j) is the ground truth disparity, and the σ is a
threshold error value to determine the precision. This metric is
also called the percentage of bad pixels whose error is greater
than σ .

E = 1

N

W−1	
i=0

H−1	
j=0

(


dr (i, j) − dgt (i, j)



 > σ). (9)

We also investigated the results of the no position flag, the
median, and mean values in the region as shown in Fig. 7 with
different region sizes and different optimization strategies.
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Fig. 10. (a and b) No.172 left and right images of KITTI2015 training sets;
(c) Grayscale disparity map of traditional SGM; (d) Grayscale disparity map
of rSGM with 4-size region and 0◦ + 135◦ paths; (e) Pseudo-color disparity
map of traditional SGM; (f) Pseudo-color disparity map of rSGM with 4-size
region and 0◦ + 135◦ paths; (g) Error map of traditional SGM (noc:5.58%,
occ:6.60%); (h) Error map of rSGM(noc:6.49%, occ:7.52%); Disparity SNR
of the traditional SGM(noc: 21.6 dB, occ: 20.8 dB); Disparity SNR of the
rSGM(noc: 21.3 dB, occ: 20.6 dB).

From the visible results in the upper part of Fig. 7, we can find
that the smoothy effect is apparent and the error rates are high
in the case without the position flag. Finding the median value
is implemented by sorting the n initial matching costs in the
region and then taking the median one as the region-optimized
cost of the corresponding region. The mean value of a region
is calculated by summing up all the initial matching costs of
a region and then dividing the result by n. It is observed that
the quality of the disparity map becomes low while increasing
the region size, and the optimization strategy of the minimum
cost in each region attains the best disparity-map quality and
accuracy in comparison to the median and mean strategy.
As illustrated in Fig. 7, the regional optimization with the
size of 4 leads to an average accuracy loss of less than
1% comparing to no optimization. In particular, the 2-size
region-optimization achieves even better accuracy than the
original SGM. As regional optimization is utilized to decrease
resource consumption and accelerate the speed for satisfying
the IoT edge devices, this loss is a trade-off between accuracy,
resource, and speed.

Since different numbers and combinations of aggregation
directions have disparate effects on the accuracy of the rSGM
algorithm, we carry out the analysis of the error rates for the
cost aggregation with different combinations of the directions.
The error results on the latest Middlebury V3 benchmark
under three threshold values σ = 1, 2, and 3 for inves-
tigating different combinations of the 4 aggregation direc-
tions (0◦, 45◦, 90◦, and 135◦) and 8 directions are shown
in Fig. 8 and Fig. 9 which respectively present the results with
and without the post-processing for the rSGM. The analysis
results show that the error rates in eight directions are even
worse than those in four directions. In particular, the error
rates of the combination of 0◦ and 135◦ with post-processing,

Fig. 11. (a and b) No.138 left and right images of KITTI2015 training sets;
(c) Grayscale disparity map of traditional SGM; (d) Grayscale disparity map
of rSGM with 4-size region and 0◦ + 135◦ paths; (e) Pseudo-color disparity
map of traditional SGM; (f) Pseudo-color disparity map of rSGM with 4-size
region and 0◦ + 135◦ paths; (g) Error map of traditional SGM (noc:3.27%,
occ:3.83%); (h) Error map of rSGM(noc:4.14%, occ:4.88%). Disparity SNR
of the traditional SGM(noc: 26.3 dB, occ: 25.6 dB); Disparity SNR of the
rSGM(noc: 26.1 dB, occ: 24.2 dB).

Fig. 12. Hardware implementation demonstrated on Xilinx Spartan-7 and
Intel Stratix-V FPGA platforms.

i.e., 15.80%, 9.79%, and 7.07% under σ = 1, 2, and 3, are
the best among these options.

Furthermore, we also test and compare the error rates of
the traditional SGM and the rSGM with different numbers
of aggregation paths on datasets (KITTI 2015 [35] and Mid-
dlebury 3.0) in Table I. From the results on Middlebury 3.0,
it is observed that the SGM and rSGM with four-path and
eight-path reach almost the same error rates under the same
post-processing including left-right check, hole filling, and
11 × 11 median filter. In particular, the combination with only
paths of 0◦ and 135◦ achieves the best accuracy. The reason
is that the paths of 0◦ and 135◦ can reduce the accumulated
error of the path decomposing.

In addition, we also evaluate the error rates of the SGM
and rSGM on KITTI2015 training datasets under different
scenarios where we select the same images as [33]. It is further
proved that the paths of 0◦ and 135◦ still produce the best
accuracy rate for both the SGM and rSGM. On this dataset,
the result of the SGM is a little bit better than that of the
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TABLE II

COMPARISON WITH DIFFERENT ARCHITECTURE ON RESOURCE UTILIZATION AND PERFORMANCE

rSGM. The results indicate that the accuracy of the rSGM can
satisfy the requirement of robot navigation and autonomous
cars.

According to the above analysis, we finally choose rSGM
with a 4-size region and the combination of the 0◦ and 135◦
for aggregation. Although the rSGM with a 2-size region can
achieve high accuracy that is even better than traditional SGM,
the rSGM with a 4-size region can save hardware resources
and memory usage.

Furthermore, as for the noise performance, the comparison
between the disparity map and error map of two KITTI
2015 training datasets (No.172 and No.138 with noise), where
the red and yellow parts mean badly matched pixel for the
default 3-pixel threshold, is illustrated in Fig. 10 and Fig. 11.
These results indicate that most errors occur at the place where
the gradient changes greatly and the interior of the object is
almost always matched correctly. Since the regional optimiza-
tion with a local minimum of a region still must be aggregated
in a disparity searching range, it works as a smooth filter
that blurs the gradient edges. Furthermore, the signal-to-noise

ratio (SNR) is expressed to quantify the noise performance in
(10) where H and W are the image height and width, dr (i, j) is
the disparity obtained by the proposed algorithm, and dgt (i, j)
is the ground truth disparity. The SNR comparison results
of No.172 and No.138 training images in KITTI 2015 are
shown in Fig. 10 and Fig. 11, the SNR of SGM is slightly
higher than the rSGM. Therefore, the proposed rSGM can well
inherit the robustness and accuracy of the traditional SGM and
has great improvement on the computational complexity and
hardware-resource consumption.

SN R = 10 log10

� �H
i=1

�W
i=1 dgt (i, j)2�H

i=1
�W

i=1 [dgt (i, j) − dr (i, j)]2


. (10)

B. Discussion of the Hardware Implementation

As described above, a pixel-level pipeline architecture is
designed for the rSGM. Accordingly, the processing speed
can be deduced according to (6), where fps represents frame
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TABLE III

ERROR RATE COMPARISON TO THE STATE-OF-ART WORKS
ON KITTI 2015 AND MIDDLEBURY V3 DATASETS

per second, fmax is the maximum frequency and res is the
image resolution.

f ps = fmax

res
. (11)

In this work, the depth estimation coprocessor with the pro-
posed rSGM is demonstrated on a low-cost Xilinx Spartan-7
FPGA and an advanced Intel Stratix-V FPGA platform
in Fig. 13 with MT9V034 global-shutter CMOS Image Sen-
sors (CISs). In Fig. 12, the disparity maps in pseudo-color and
grayscale maps express the distances where the color from red
to blue or from light to dark indicates the distance from near
to far. For the case of VGA resolution with a 128-disparity
searching range and a size of 4 for regional optimization,
it consumes only 29K LUTs, 31K Registers, and 622Kbit
on-chip memory on the Spartan-7 FPGA and 17K LUTs,
18K Registers, and 496Kbit on-chip memory on the Stratix-V
FPGA. In particular, the max working frequency can reach up
to 156 MHz, which means a processing speed of 508 fps,
and the power dissipation is 669mW. The dynamic power
dissipation is only 63 mW at a typical working frequency
of 24MHz for about 60-fps real-time processing.

Table II presents the comparison results of the hardware
implementation between the proposed architecture and various
state-of-art hardware implementations for depth estimation
with the SGM stereo matching. This work is synthesized
on different FPGA families to eliminate the effect on the
FPGA type where an advanced FPGA can produce a better
performance. It is observed that the proposed coprocessor for
depth estimation significantly outperforms the previous FPGA-
based state-of-art implementations on logic-resource consump-
tion (LUTs), memory usage, and processing speed. With the
same constraints such as the 128-disparity searching range,
the image resolution, and the FPGA platform, the memory
usage of thixs work is 1/5 as that in [24] and 1/7 as that
in [17]. Since the resolution of our coprocessor only affects
the size of the memory for implementing the line buffer, our
work still occupies less hardware resource than that in [21]
even with a smaller disparity of 64.

As in [17], except for their hardware usage with almost 8×
memory, 6× registers, and 4× LUTs, the working frequency
with 125MHz is much higher than that in this work with
110MHz under the Stratix-IV platform but their speed with
25 fps is more than 5× slower than that in this work. Thus,
the pixel-level pipeline architecture significantly solves the
calculation bottleneck of the cost aggregation and accelerates
the depth estimation.

The power dissipation is estimated by XILINX Vivado
and Intel Quartus Prime tools according to the FPGA type,
hardware-resource usage, and clock frequency. Due to the
pixel-level pipeline architecture synchronizing to the working
frequency of the image sensor, except for the capacitance
related to the scale of the hardware resource (chip area),
the dynamic power is mainly affected by the working fre-
quency. Consequently, this work is the most energy-efficient
among the FPGA implementations under the same conditions.
It is also comparable to the ASIC implementation in 28 nm
CMOS technology with 6.72nJ/pixel (VGA) and 14.6nJ/pixel
(FHD) [29] which can achieve 30 fps for stereo depth at
VGA and 25 frames/s at FHD resolution. Although several
ASIC designs in Table II improved the SGM through different
optimization to save the memory utilization, they adopted
the external memory. For large bandwidth, these works need
high working frequency. Therefore, the memory usage in [28]
is almost the same to this work, their processing speed
of 30fps with the working frequency of 170MHz is at least
2× slower than a speed of 61 fps with the working frequency
of 127 MHz.

In [16], a complicated CNN is used to find the optimal
penalty coefficients on NVIDIA Titan X GPU with the power
of about 250W and they gain a high-quality disparity maps
output. In addition to the GPU implementation, combining an
advanced FPGA with CPU in [17] is also not suitable for IoT
applications.

The accuracy, which is often expressed by the error rate,
is compared to the state-of-art works on the two main-
stream datasets KITTI 2015 and Middlebury V3. The results
in Table III show that the error rate of this work is comparable
to that of the others on the KITTI 2015 datasets, and it is
even a little better than that in [17] and [24] on Middlebury
V3 datasets. This indicates that this work with compact
hardware architecture also ensures accuracy.

VI. CONCLUSION

In this paper, we have proposed a region-optimized SGM
algorithm and designed a compact stereo-matching hard-
ware architecture. Regionalized initial matching costs have
significantly avoided large resource consumption in the aggre-
gation process. The two-layer parallel two-stage pipeline struc-
ture in this work allows the calculation of two directions
(0◦ and 135◦) aggregation to solve the crucial computational
bottleneck of the SGM algorithm and this significantly saves
resources even without external memories. In the IoT area,
stereo-matching devices need to be compact, economical, and
fast. Comparing with the previous works, our hardware imple-
mentation used the least resources with limited accuracy loss
demonstrated on the low-cost FPGA device XILINX Spartan-7
and a high-level Stratix-V FPGA device. It is observed that
our architecture is the most energy-efficient than the state-
of-art works that make it directly comparable to the ASIC
implementation.
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