
https://geospatialworld.net/news/lizardtech-

awarded-us-patent-lidar-point-cloud-compression-2/

HPCA 2026

Yuzhe Fu, Changchun Zhou, Hancheng Ye, Bowen Duan, 
Qiyu Huang, Chiyue Wei, Cong Guo, Hai Li, and Yiran Chen

Department of Computer Science, Duke University
Department of Electrical and Computer Engineering, Duke University
Duke University Center for Computational Evolutionary Intelligence (CEI)

FractalCloud: A Fractal-Inspired Architecture for Efficient Large-Scale Point Cloud Processing Yuzhe Fu, Yiran Chen

A Fractal-Inspired Architecture for Efficient 
Large-Scale Point Cloud Processing

FractalCloud:



Background 2

Point cloud in deep learning: PNN

Qi et al., PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017
Vallet et al., TerraMobilita/IQmulus urban point cloud analysis benchmark, CG 2015.

Tang et al., Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution, ECCV 2020.

Object
Classification

3D Semantic 
Segmentation

3D Object 
Detection



Background 3

Point cloud in daily life

VR Glasses
Autonomous 

Driving

AR in iPhone and 
iPad

Automatic 
Drones

https://www.softwareone.com/en/insights
iPad - Apple

5 ways LiDAR is transforming the world before our eyes
Tourists scaling the Great Wall of China can now get takeout delivered by drone | CNN Business

https://www.softwareone.com/en/insights
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://geospatialworld.net/blogs/5-ways-lidar-is-transforming-the-world-before-our-eyes/
https://edition.cnn.com/2024/08/22/tech/china-drone-delivery-great-wall-intl-hnk/index.html


Background 4

Point cloud in daily life

VR Glasses
Autonomous 

Driving

AR in iPhone and 
iPad

Automatic 
Drones

https://www.softwareone.com/en/insights
iPad - Apple

5 ways LiDAR is transforming the world before our eyes
Tourists scaling the Great Wall of China can now get takeout delivered by drone | CNN Business

Efficiency is important

Low latency
Low energy consumption

https://www.softwareone.com/en/insights
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://geospatialworld.net/blogs/5-ways-lidar-is-transforming-the-world-before-our-eyes/
https://edition.cnn.com/2024/08/22/tech/china-drone-delivery-great-wall-intl-hnk/index.html


Poor scaling in PNNs

Motivation 5

Bottleneck shift: from MLPs to Point Operations
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Background 6

Zhou et al., Open3D: A modern library for 3D data processing. arXiv, 2018.
https://pixabay.com/zh/photos/rabbit-nature-wildlife-animal-5469252/

3D Point Cloud
Points: (x, y, z), Feature, …

Unordered in Memory

2D Image
Pixels: RGB values

Structured in memory

Point cloud Data



Point operations in PNNs

Motivation 7

Bottleneck shift: from MLPs to Point Operations

• Sample: Centric points

• Neighbor Search: local information

• Gather: Map data from spatial 

domain to feature domain 

• All-to-All Computing

• Global Memory Scan

• Iterative Computing
The backbone of PNNs

Point 
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Point operations in PNNs

Motivation 8

Bottleneck shift: from MLPs to Point Operations

• Sample: Centric points

• Neighbor Search: local information

• Gather: Map data from spatial 

domain to feature domain 

• Irregular Memory

• Iterative Computing

• All-to-All Computing
The backbone of PNNs

Centric points Local information

Sample

Group

Spatial DomainSpatial Domain

Gather

Feature Domain

[f0, f3, f5, ...]

[f2, f4, f6, ...]

[f7, f8, f1, ...]

MLPs

Bottleneck shifts to point operations.
Partition can help.



Current Hardware Architecture

Motivation 9

⚫ Space-Aware Partition [VLSI’21, ICCAD’23]

◦ Example: Uniformly Partition

◦ Hardware friendly

◦ Streamed memory access

Imbalanced point distribution

Fail to guarantee accuracy

Kim et al., Pnnpu: A 11.9 tops/w highspeed 3d point cloud-based neural network processor with block-based point processing for regular dram access. VLSI, 2021.
Zhou et al., An Energy-Efficient 3D Point Cloud Neural Network Accelerator with Efficient Filter Pruning, MLP Fusion, and Dual-Stream Sampling. ICCAD, 2023.



Current Hardware Architecture

Motivation 10

⚫ Density-Aware Partition [ISCA’22, ASPLOS’25]

◦ Example: KD-Tree

◦ Guaranteed accuracy

◦ Streamed and balanced memory access

Exclusive hardware

Acceptable when small-scale process

New bottleneck for large-scale process

Feng et al., Crescent: taming memory irregularities for accelerating deep point cloud analytics. ISCA, 2022.
Feng et al., StreamGrid: Streaming Point Cloud Analytics via Compulsory Splitting and Deterministic Termination. ASPLOS, 2025.



Three roads for Current Architecture

Motivation 11

⚫ Density-Aware Partition [ISCA’22, ASPLOS’25]

◦ Example: KD-Tree

◦ Streamed and balanced memory access

◦ Guaranteed accuracy

Exclusive hardware

New bottleneck for large-scale process

Feng et al., Crescent: taming memory irregularities for accelerating deep point cloud analytics. ISCA, 2022.
Feng et al., StreamGrid: Streaming Point Cloud Analytics via Compulsory Splitting and Deterministic Termination. ASPLOS, 2025.

We hope partition could be

Accurate & Efficient



Motivation 12

Fractal Insight

Real point clouds follows geometry
Inspired by fractal geometry

◦ Traverse shape, not sort



Fractal: Accurate and Efficient

Motivation 13

⚫ Shape-Aware Partition

◦ Streamed memory access

◦ Guaranteed accuracy

Inclusive hardware

Efficient for all-scale process



Fractal: Iterative Shape-Aware Partitioning

Fractal: Shape-Aware Partition 14

⚫ Inputs:
◦ Point cloud
◦ Threshold (controls block size)

⚫ Each iteration:

◦ If block size > threshold

◦ Traverse points along one axis

◦ Compute midpoint from min & max

◦ Partition

◦ Alternate partition axis (x -> y -> z)



Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 15
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 16
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 17

0

1

1
st

 Fractal Iteration

1

80

Binary Tree Flow

Step1: Find min & max along x-axis

min

max
Process



Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 18
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 19
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 20
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 21
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 22
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 23
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 24
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 25
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 26
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 27
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Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 28

B1

B2

B3

B4 80

43 37

19 17

B1 B2 B3 B4

24 20

Binary Tree FlowWith Fractal

Depth First 

Traversal 

DFT to determine the block order



Example for Fractal – 80 Points, threshold 24

Fractal: Shape-Aware Partition 29
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Extend Fractal from Points to Operations

Block-Parallel Point Operations 30

⚫ Fractal is cheap and scalable.

⚫ Blocks are mutually independent.

Block-level parallelism
◦ Local computation and memory access

Four Blocks

B1

B2

B3

B4

Block-Paralle

Point Operations

B3B3B2B2B1B1 B4B4

B3B3B2B2B1B1 B4B4

 Fractal

Input Point Cloud



Block-Parallel Point Operations

Block-Parallel Point Operations 31

⚫ Block-wise Sample

◦ Process within current block

◦ Inter-block parallelism



Block-Parallel Point Operations

Block-Parallel Point Operations 32

⚫ Block-wise Neighbor Search

◦ Expend searching to parent node

◦ One parent level is sufficient



Block-Parallel Point Operations

Block-Parallel Point Operations 33

⚫ Block-wise Gather

◦ Same rules as neighbor search



Block-Parallel Point Operations

Block-Parallel Point Operations 34

Block-wise Sample
Block-wise Neighbor Search
Block-wise Gather

⚫ Eliminate all-to-all computing 

⚫ Unlock block-level parallelism

⚫ On-chip feasible



FractalCloud: Point Cloud Accelerator

Hardware Architecture 35

⚫ Systolic Array

⚫ Network on Chip (NOC)

⚫ Direct Memory Access (DMA)

⚫ RISC-V MCU

⚫ SRAM (274KB)

⚫ Fractal Engine

⚫ Reuse-Skip Enabled Point Unit (RSPU)



Fractal Engine

Hardware Architecture 36

⚫ Reconfigurable structure for multiple partitions:

◦ Fractal, KD-Tree, uniform partition.

⚫ Fractal:

◦ Simple Hardware

◦ Inclusive

◦ Fully pipelined



Reuse Skip Enabled Point Unit (RSPU)

Hardware Architecture 37

⚫ Unified module for all point operations

◦ FPS, Ball Query, KNN (Interpolation)

◦ Blocks run with DFT order

⚫ Flexible Block-Parallel Workflow

Block-Wise Sample

◦ Inter-block parallelism

Block-Wise Neighbor Search

◦ Intra-block parallelism

Single RSPU

Multiple RSPUs



Flexible Block-Parallel for Multiple RSPUs

38

⚫ Block-Wise Sample: inter-block parallelism

⚫ Each RSPU handles one FPS within one block

Hardware Architecture

Single RSPU

Multiple RSPUs

⚫ Window check: Skip redundant 
computation



Reuse-and-Skip-enabled Point Unit (RSPU)

39

⚫ Block-Wise Neighbor Search: intra-block parallelism

⚫ Each RSPU process different centric points in same block

Hardware Architecture

Single RSPU

Multiple RSPUs

⚫ Data reusing from 
parent node



HW Implementation

Hardware Implementation 40

⚫ Small hardware: 
◦ TSMC 28nm
◦ Core Area: 1.5 mm2

◦ Power: 0.58 W
◦ Frequency: 1 GHz



Evaluation 41

Evaluation

⚫ Hardware Architectures 
◦ Same PE cores
◦ Fixed Frequency
◦ Equal DRAM Bandwidth
◦ ……

⚫ Network Benchmarks
◦ Inputs scale from 1K to 289K
◦ Three PNNs
◦ Three Tasks
◦ Three Datasets



Network Accuracy

Evaluation 42

Guaranteed accuracy:
Less than 0.7% accuracy loss for all models

Better performance than SOTA works



Performance Gain over SOTA accelerators

Evaluation 43

Huge performance: 
Average 21.7x speedup

Average 27x energy saving



FractalCloud for Efficient PNN Acceleration

Conclusion 44

⚫ Application: AR/VR, automatic drive, drones, …
⚫ From small to large input processing

1K @ 2017 (Simple)
Object Classification

300K @ 2024 (Complex)
Semantic Segmentation

FractalCloud Optimization
21.7x speedup



Conclusion 45
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21.7× Speedup 

27× Energy Save

Accuracy and Efficiency

Local Computation Low latency & low energy cost

Block-Parallel Hardware



Acknowledgements

Center of Computational Evolutionary Intelligence (CEI)46



FractalCloud
HPCA 2026

Thanks for Listening.

Codes are open-sourced at

https://github.com/Yuzhe-Fu/FractalCloud
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