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Point cloud in deep learning: PNN

Background

3D Semantic
Segmentation

Detection

3D Object s aam [ e e m ”

|

: Car : Truck D : Pedestrian D . Barrier : Drivable Area . : Lane Divider . : Walkway : Crosswalk

Qi et al., PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017
Vallet et al., TerraMobilita/IQmulus urban point cloud analysis benchmark, CG 2015.
Tang et al., Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution, ECCV 2020.



Point cloud in daily life

Autonomous

VR Glasses &
Driving

UBERATCCOM/CAR
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AR in iPhone and / ‘ F - Automatic
iPad : A Drones

iDAR Scanner

Background


https://www.softwareone.com/en/insights
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://geospatialworld.net/blogs/5-ways-lidar-is-transforming-the-world-before-our-eyes/
https://edition.cnn.com/2024/08/22/tech/china-drone-delivery-great-wall-intl-hnk/index.html

Efficiency is important

Low latency
Low energy consumption



https://www.softwareone.com/en/insights
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://geospatialworld.net/blogs/5-ways-lidar-is-transforming-the-world-before-our-eyes/
https://edition.cnn.com/2024/08/22/tech/china-drone-delivery-great-wall-intl-hnk/index.html

Poor scaling in PNNs
Bottleneck shift: from MLPs to Point Operations
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Point cloud Data
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2D Image 3D Point Cloud

Pixels: RGB values Points: (x, vy, z), Feature, ... ¢
Structured in memory [ Neura Unordered in Memory @ Neural

Network Network

Zhou et al., Open3D: A modern library for 3D data processing. arXiv, 2018.
https://pixabay.com/zh/photos/rabbit-nature-wildlife-animal-5469252/ Duke
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Point operations in PNNs

Bottleneck shift: from MLPs to Point Operations

Sample: Centric points

Spatial Domain Spatial Domain Feature Domain

Neighbor Search: local information [f0, 3, 5, ...
Sample Gather

Convs
) —> | ——> [f2,f4,f6,..] >
Gather: Map data from spatial Group | R MLPs

domaln to feature domam @® (Centric points Local information

All-to-All Computing /

7

Input Point x N Point
P(llnt CIoudE>[ Operaltlons Convs > = Convs > Output
Global Memory Scan P

Stage 1 Stage N

Iterative Computing
The backbone of PNNs Duke

Motivation



Bottleneck shifts to point operations.
Partition can help.




Current Hardware Architecture

e Space-Aware Partition [VLSI'21, ICCAD’23]

°Example: Uniformly Partition Imbalanced point distribution

> Hardware friendly Fail to guarantee accuracy

o Streamed memory access

= [,|  Center Core #0-15
Controller .
Sampling  [coord.

(a) Baseline (b) Space-Aware

ontrol Module

Core #0-7
Grouping
Mapping Module

Imbalance

Bank[0](4KB

Bank[1](4KB

Accuracy: 62.59%

27
yo0.5 53.79%
0.03ms

Bank[3](4KB

Interface Module

)
)
Bank[2](4KB)
)
)

Efficiency: - Bank[4](4KB

Convolution Modu

Memory Controller

Complexity: - 08 x5 12| 9™

80 Points
Non-Partition

Core #0-7

0
Uniformly Partition

Bank[31](4KB)

Memory Module Pooling Module

Kim et al., Pnnpu: A 11.9 tops/w highspeed 3d point cloud-based neural network processor with block-based point processing for regular dram access. VLSI, 2021.
Zhou et al., An Energy-Efficient 3D Point Cloud Neural Network Accelerator with Efficient Filter Pruning, MLP Fusion, and Dual-Stream Sampling. ICCAD, 2023. Duke

Motivation



Current Hardware Architecture

e Density-Aware Partition [ISCA’22, ASPLOS’25]

o> Example: KD-Tree Exclusive hardware

- Guaranteed accuracy Acceptable when small-scale process

New bottleneck for large-scale process

KD-Tree Sorter o n )
(Exclusive) BS
1024

o Streamed and balanced memory access

(a) Baseline

(c) Density-Aware

20 Strictly
Balance

] Sorting
1
12 1
512

]
Median

2
256@256 256@\256
|
edian edian

Q>

Efficiency: - ¢ 4.03ms

Complexity: - 20 O(n-logn)

Sorted Median
(KD-Tree)

80 Points
Non-Partition

l |
| |
| |
| |
l |
| |
| |
Accuracy: 62.59%: 20 ? 20 | 62.30% & :
| |
| |
| |
| |
| |
| |
| |
| |

Block Size (BS)=64, 1K Points: 15 sorting

) . . . . . BS=256, 289K Points: 2047 sorting
Feng et al., Crescent: taming memory irregularities for accelerating deep point cloud analytics. ISCA, 2022.

Feng et al., StreamGrid: Streaming Point Cloud Analytics via Compulsory Splitting and Deterministic Termination. ASPLOS, 2025.

Motivation



We hope partition could be

Accurate & Efficient




Fractal Insight

. Inspired by fractal geometry
Real point clouds follows geometry

> Traverse shape, not sort

Duke
1

Motivation



Fractal: Accurate and Efficient

e Shape-Aware Partition

o Streamed memory access

o @uaranteed accuracy

(a) Baseline

Accuracy: 62.59%
Efficiency: -

Complexity: -

80 Points
Non-Partition

Motivation

Inclusive hardware

Efficient for all-scale process

(d) Shape-Aware (Ours)

‘Averaged Midpoint

o Moderately

Balance

;]| 62.03% @
0.04ms

O(n)

Fractal Traverser n
(Inclusive) ~ O(log, E)
1024

[ ‘ ]  Traversing

Midpoint . 1
495 T 529

Midpoint E:.)
220, 275 | 280", 249

BS=64, 1K Points: 4 traversing
BS=256, 289K Points: 11 traversing

Duke
1



Fractal: Iterative Shape-Aware Partitioning

e Inputs:
o Point cloud
o Threshold (controls block size)

e Each iteration:

o |f block size > threshold
> Traverse points along one axis
o Compute midpoint from min & max
o Partition

Alternate partition axis (x -> vy -> z)

Fractal: Shape-Aware Partition

Shape-Aware (Ours)

|
Y

‘Averaged Midpoin{

>  Moderately

Balance
62.03% €2
0.04ms
O(n)




Example for Fractal — 80 Points, threshold 24

OLis[h IR Data Layout in Memory Binary Tree Flow

1 __—"idx| Coordinates i ‘ @
1] (X0,Y0,20)

2 | (X40,Y40,Z40)
3 (X62ay62,262) | ' . @ @
79 o 19 @ (D @

0\ 80 Points ]\ 80| (Xs6,Ys56,Z56)

o

Start Fractal, with th=24 Unordered After 3 Fractal Iterations, 4 blocks, all blocks < 24

Duke
1

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24

Check Fractal Binary Tree Flow
1 Check

0 80 Points
80 > 24, do Fractal

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24

1* Fractal Iteration Binary Tree Flow
1| ma)?(‘ Process

min
Q

ol ),
Step1: Find min & max along x-axis

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24

1* Fractal Iteration Binary Tree Flow
1 max Process

’
I
I
I
I
I
I
|
I
|
|
I
I
I

min
?

0\ )1
Step2 Flnd mldpomt by (min+max)/2

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24

1* Fractal Iteration Binary Tree Flow

! 37 Partition @

Bt ©

0\ L]
Step3: Partition 80 into 43- and 37- point blocks

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24
Binary Tree Flow

Chec \@

1] 43 37

0 J
43 > 24, do Fractal

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24
Binary Tree Flow

Proce \@

T

A )1
Step1: Find min & max along y-axis

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24
Binary Tree Flow

T

Process \

Al '. @ @

Y
L )1
Step2: Find midpoint by (min+max)/2

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24

2" Fractal Iteration Binary Tree Flow

1| 37

' CN
. Partition ) @

=
O
o
O
=

Y

Step3: Partition 43 into 19- and 24- point blocks

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24
Binary Tree Flow

1119 37

/N
. @

19 < 24, no Fractal

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24
Binary Tree Flow

1| 19 37

/N
. @D
24 Check

24 == 24 no Fractal

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24

Check Threshold Binary Tree Flow

1| 19 37

/
- Check

Same flow for all Fractal lterations

Not sort, only Linear Traverse

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24

Binary Tree Flow

(43) (7,
19 @) (D @

After 3 Fractal lterations, 4 blocks, all blocks < 24

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24

w Binary Tree Flow

B1 B4 _.| Depth F|rst
Traversal

: /Aa‘s
5 ® @) @

B2 B3
DFT to determine the block order

Fractal: Shape-Aware Partition



Example for Fractal — 80 Points, threshold 24

After Fractal Data Layout in Memory

idx| Coordinates

B B4
—H B

B3 20 B2

B2 s B3

"~~—_[80] (Xs6,Ys6,255) | B4
Original Point Cloud Four Point Blocks Spatially Orgnized

Fractal: Shape-Aware Partition



Extend Fractal from Points to Operations

e Fractal is cheap and scalable. ,
Block-level parallelism

. Local computation and memory access
e Blocks are mutually independent.

B ’ :81][82][83][84:

Fractal )
—> Block-Paralle
Point Operations

B2 T 7 3

81] BZ] B3

~N

Input Point Cloud Four Blocks

Block-Parallel Point Operations



Block-Parallel Point Operations

Leaf Node, also the Bn
Final Block after Fractal

° AL
BIOCk wise Sample Searching Space for Sample O

o Process within current block

° Inter-block parallelism

Search
Space

Inter-block parallelism

(b) Workflows for Block-Parallel Point Operations

Du1)<e
3

Block-Parallel Point Operations



Block-Parallel Point Operations

e Block-wise Neighbor Search

o Expend searching to parent node

o One parent level is sufficient

Block-Parallel Point Operations

_\

Leaf Node, also the
Final Block after Fractal

Searching Space for Sample O

Searching Space for
_ e Neighbor Search
B2 B3
(a) Searching Space within Tree Hierarchy

Bn

-

4
N\

Block-Wise Sample

: Point Index
= »( Bn 5

Block-Wise Point Index 5

»

S
pace ] : Neighbor Search

Center
Points

(b) Workflows for Block-Parallel Point Operations

| - Parallel

-

Duké
3




Block-Parallel Point Operations

Leaf Node, also the Bn
Final Block after Fractal

- i ‘
o BIOCk wise Gather I\ ° Searching Space for Sample O

> Same rules as neighbor search Nommoor e | dather

B2 B3
(a) Searching Space within Tree Hierarchy )

: Point Index b
Block-Wise Sample H »( Bn 5

Block-Wise
Neighbor Search

Center Feature -
Feature

Points i Block-Wise Gather
\@ Point Index
Bn ) >

(b) Workflows for Block-Parallel Point Operations

L ParaIIeI—

Duké
3

Block-Parallel Point Operations



Block-Parallel Point Operations

Block-wise Sample
Block-wise Neighbor Search
Block-wise Gather

e Eliminate all-to-all computing
e Unlock block-level parallelism

e On-chip feasible

Block-Parallel Point Operations

B3

Leaf Node, also the Bn
Final Block after Fractal

Searching Space for Sample Q

Searching Space for
Neighbor Search / Gather o

(a) Searching Space within Tree Hierarchy

<
<

Block-Wise Sample

Search .

Block-Wise

.| Neighbor Search

Feature
Center ( BParent

Points

Point Index

Point Index
\( Bn }) =




FractalCloud: Point Cloud Accelerator

Systolic Array

(Feature Computation\ [Memory Modules | [  Points Operations )

. (" Systolic Array Global Buffer .
Network on Chip (NOC) 3 X X Multi-Banked b Fractal Engine

Feature

Direct Memory Access (DMA) X X Weight [ Reuse&Skip [}
® ® ® Coordinat IEnabled Point Unit
RISC-V MCU BDW, | |
Memory Interface

Gather Unit
SRAM (274KB) __ooling ot Noc | [ovA

\_ ' ) . y RISC-V

DRAM

Fractal Engine

Reuse-Skip Enabled Point Unit (RSPU)

Hardware Architecture



Fractal Engine

e Reconfigurable structure for multiple partitions:

o Fractal, KD-Tree, uniform partition.

N\

S

(b) Points in Buffer

idx | poinis idx | points
1
2

P
. (a) Hardware Architecture for Fractal Engine
e Fractal: Data
— Fractal

i 19

. Mid — Uniform Partition | 4 5

o Simple Hardware — > KD-Tree K e i
Partition - 44 44

. Midpoint Comp.
o |nclusive > l argMax P P 2 L ot \ o

-

. . > argMin +®+ >> iBD-poinI (x)\ 80-point (x, y)‘ \ 43-point (y)

o Fully pipelined : Midéoﬁognp- | Parti. 80 (x) Parti. 43 (y)
[ ] . x .d

T ™€ Mid. Comp. g

—""[ Counter ] 43(y) mi

-

Parti. 37 (y)
Mid. C L
(c) Workflow o P /Il;

H'{ Sorter ] \ S7(Y) J
N

[teration O lteration 1 lteration 2 Timf

1 1

17

20

-
B

)\ Organized in Blocks

37-point (y)

Hardware Architecture




Reuse Skip Enabled Point Unit (RSPU)

Unified module for all point operations

FPS, Ball Query, KNN (Interpolation)

Blocks run with DFT order

e Flexible Block-Parallel Workflow
Block-Wise Sample

o Inter-block parallelism
Block-Wise Neighbor Search

o Intra-block parallelism

Hardware Architecture

Single RSPU

-

Buffer

| Distance ® H, [ |

Compute @

A

. " -
Previous Distance

Top-K  |—
Update
< ¢ ArgMax > Buffer

$
Window Check

LA

(a) Hardware Architecture of RSPU —> Interpolation

Radius

LA

— Farthest Point Sample
— Ball Query

s

Global Buffer

B1/ Bi

N (|

—> RSPUJ

x N

By / Bin

> RSPUNJ

L

Input from Buffer )

.. P4 P3 P2 P1 Po Data
11({110]0[1|Mask

S -

window L Addr
L]

J

Searching

Space of B;|

(b) Inter and Intra-Block Workflows )

Inter-Block —»
Intra-Block —»

\

Addr Addr

(c) Window Check Module )

Multiple RSPUs

Duke
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Flexible Block-Parallel for Multiple RSPUs

e Block-Wise Sample: inter-block parallelism

e \Window check: Skip redundant

e Each RSPU handles one FPS within one block computation

f A
Distance @ Top# Update
Compute (¥) < — ArgMax Buffer

|4

P

- - >
Previous Distance

— Farthest Point Sample

VAN
Single RSPU

~) [

— ~

— RSPU,
Lo J
X

Input from Buffer
. P4 P3 P2 P1 Po Data

- 1[1]0]0]1]Mask
- i
Rig RSPUN) vwmdow Addr

Inter-Block —» LOD i@?—» Eg;t
Addr '

Multiple RSPUs | (¢) Window Check Module

*x N

Multiple
RSPUs

A
.

lobal Buffer

N

J

Hardware Architecture



Reuse-and-Skip-enabled Point Unit (RSPU)

e Block-Wise Neighbor Search: intra-block parallelism e Data reusing from
parent node

e Each RSPU process different centric points in same block

e — ; _
Distance (X) H, —L_TopK

\

ArgMax

Buffer Compute (+) <
. 11t
™ Window Check Radius A —»  Ball Query
— Single RSPU —> Interpolation |
e = ﬁ'/
B3 > RSPU;,

W,
XN

—a____ K <
B3 > RSPU,

Multiple
RSPUs

/

earching
Space of B3| Intra-Block —»

Multiple RSPUs

-

| Global Buffer

Hardware Architecture



HW Implementation

Chip Layout of Proposed FractalCloud Detailed Specifications

Technology 28nm
Die Area 3 mm°
Core Area 1.5 mm°

e Small hardware:
SRAM Size 274 KB
o TSMC 28nm di i bl
o Core Area: 1.5 mm? * _ ' Ave. Power N
o Power: 0-58 W Mea ‘ Area Breakdown Energy Breakdown

1.2"(9
° Frequency: 1 GHz

LR AR AR L)
dodoavIVYYYY

TIVIFHha000 440
K R RN )

AfArAaTYIYYYY
RN EE)

SARRNAN N R UCRLE R R R Fabsiprenr

#e PE Array B Memory [ RSPU

Duke

Hardware Implementation



Evaluation

e Network Benchmarks
° Inputs scale from 1K to 289K
> Three PNNs
o Three Tasks
o Three Datasets

e Hardware Architectures
o Same PE cores

° Fixed Frequency
o Equal DRAM Bandwidth

Evaluation

Model

Notation Task Dataset Scene

PointNet++
PointNe Xt

PN++ (¢)
PNXt (¢)

Classification ModelNet40  Object

PointNet++
PointNeXt

PN++ (ps)

Part Segmentation
PNXt (ps)

ShapeNet Object

PointNet++
PointNeXt

PointVector

PN++ (s)
PNXt (s)
PVr (s)

Segmentation

Accelerator

Mesorasi [27] PointAce [28] Crescent [29]  FractalCloud

Cores

16x16 16x16 16x16 16x16

SRAM (KB)

1624 274 1622.8 274

Frequency

1GHz 1GHz 1GHz 1GHz

Area (mm?2)

4.59 1.91 4.75 1.5

DRAM
Bandwidth

DDR4-2133 DDR4-2133 DDR4-2133 DDR4-2133
17GB/s 17GB/s 17GB/s 17GB/s

Technology

28nm 28nm 28nm 28nm

Peak
Performance

512 GOPS 512 GOPS 512 GOPS 512 GOPS




Network Accuracy

E=S Original (PointAcc) Mesorasi IEER Crescent PNNPU
M FractalCloud

=
o
o 80
| -
5
@)
@)
<L

(o)}
o

Guaranteed accuracy:

Less than 0.7% accuracy loss for all models
Better performance than SOTA works

Evaluation



Performance Gain over SOTA accelerators

E== Mesorasi

1 PointAcc # Crescent

FractalCloud

otheXt on 53DIS Test

8K 33K

131K 289K

PomtVector on SBDIS -Test B
8K 33K 131K 289K

=
o
W

Energy Saving
(=]
<

Evaluation

180

66

PN++(c

216

53//

376

135
63 23

il

PNXt (c) PN++ (pS) PNXt (ps) PN++ (s) PNt (S) PVr( )

415.96

1

667

81 94 |{ 54 46

[N

46 48

‘/

33K

Huge performance:
Average 21.7x speedup

PotheXt on S3DIS-Test

131K 289K

Average 27x energy saving

3968
506 826
194244 168160

/| 1%6 103
7
10

PomtVector on S3DIS Test
33K 131K 289K




FractalCloud for Efficient PNN Acceleration

S)
2

am

e Application: AR/VR, automatic drive, drones, ...
e From small to large input processing

-------+

A 2 A
N q g
”@;;ii;} ‘fﬁ» <:{:T 4’5}
\> n
g
\ J/l \ - " Latency —— Base —— Our
& £ ;o
‘- (‘ .: o : - §
» o - M 5

¢ | Memory =1 Base — Our

Latency (ms)

g ?’ &
FractalCloud Optimization

1K @ 2017 (Simple) 300K @ 2024 (Complex)
Object Classification Semantic Segmentation 21.7x speedup
Duke

Conclusion



Accuracy and Efficiency Block-Parallel Hardware

. e B | s i
| | O exz) 15,1 | FractalCloud for Efficient o) o

N| N —»  Ball Query
(a) Hardware Architecture of RSPU — Interpolation )

- B2 PNN Acceleration o) {-J"E?‘Sf”sfﬁ% J

S ~[1]1]0o] 0] 1] Mask

44 B3 : %RSUPN] window " Addr
¥

Searching Inter-Block —» Lop |3 9 » Next

80 (X56 Y56 Z56) B4 Space of B; Intra-Block —» Addr Addr

’ ’ L (b) Inter and Intra-Block Workflows ){__(c) Window Check Module

Reuse-and-Skip-Enabled
Fractal: Shape-Aware Partition e Dedicated Point Unit

Architecture

Multiple
RSPUs

J

Spatially Orgnized

Local Searchfl Data Reuse

Leaf Node, also the h

Final Block after Fractal

Bn

) Searching Space for Sample

Searching Space for Q
N I =l Neighbor Search / Gather
B4 B5 B6 DFT

(a) Searching Space within Tree Hierarchy 21 . 7 X S peed u p
et e 27 X Energy Save

Search__

Space Bearon - " Elﬁgk-\gise ; Point Index ——
ﬁ Coord. eighbor Searc F'arallel-

Center reatre Feature

Points N Wi . & ) i
~. ———, Point Index_| Block-Wise Gather ol TR e
(_Bn ) » Parallel o b b e oo 1l o ot 8 bl (| o

(b) Workflows for Block-Parallel Point Operations

Block-Parallel Point Operation Area: 1.5mm?2, Power 0.58W

TV 0000440 Pherbbeen

(RS AAARALS

Conclusion
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FractalCloud Thanks for Listening.
HPCA 2026

1 Codes are open-sourced at
p, https://github.com/Yuzhe-Fu/FractalCloud
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