& @ [V]
FractalCloud:

A Fractal-Inspired Architecture for Efficient
Large-Scale Point Cloud Processing

HPCA 2026

Yuzhe Fu, Changchun Zhou, Hancheng Ye, Bowen Duan,
Qiyu Huang, Chiyue Wei, Cong Guo, Hai Li, and Yiran Chen

Department of Computer Science, Duke University
Department of Electrical and Computer Engineering, Duke University
Duke University Center for Computational Evolutionary Intelligence (CEIl)

FractalCloud: A Fractal-Inspired Architecture for Efficient Large-Scale Point Cloud Processing Yuzhe Fu, Yiran Chen Duke

Point cloud in deep learning: PNN

Background

3D Semantic
Segmentation

Detection

3D Object s aam [e e m ”

|

: Car : Truck D : Pedestrian D . Barrier : Drivable Area . : Lane Divider . : Walkway : Crosswalk

Qi et al., PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, CVPR 2017
Vallet et al., TerraMobilita/IQmulus urban point cloud analysis benchmark, CG 2015.
Tang et al., Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution, ECCV 2020.

Point cloud in daily life

Autonomous

VR Glasses &
Driving

UBERATCCOM/CAR

. UBER

\ ADVANCED Y

e TECHNOLOGIES
CENTER ol @ %

e — R4\

AR in iPhone and / ‘ F - Automatic
iPad : A Drones

iDAR Scanner

Background

https://www.softwareone.com/en/insights
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://geospatialworld.net/blogs/5-ways-lidar-is-transforming-the-world-before-our-eyes/
https://edition.cnn.com/2024/08/22/tech/china-drone-delivery-great-wall-intl-hnk/index.html

Efficiency is important

Low latency
Low energy consumption

https://www.softwareone.com/en/insights
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://www.apple.com/ipad/
https://geospatialworld.net/blogs/5-ways-lidar-is-transforming-the-world-before-our-eyes/
https://edition.cnn.com/2024/08/22/tech/china-drone-delivery-great-wall-intl-hnk/index.html

Poor scaling in PNNs
Bottleneck shift: from MLPs to Point Operations

1;;103_? 71 Point Operation
£] @@ MLPs

> 102+
(-]

Q :
® 10*-
|]

100

289K Point Number
Y,

PointNet, PointNet++ DGCNN PointVector
I
e Segmentation
[Classification] '@'_> [and Detection}

2023
Duke

Motivation

Point cloud Data

e T T e
e :_',-.' "
WY oA "‘III‘I

T
e,
-H: .:-_'.--

2D Image 3D Point Cloud

Pixels: RGB values Points: (x, vy, z), Feature, ... ¢
Structured in memory [Neura Unordered in Memory @ Neural

Network Network

Zhou et al., Open3D: A modern library for 3D data processing. arXiv, 2018.
https://pixabay.com/zh/photos/rabbit-nature-wildlife-animal-5469252/ Duke

Background

Point operations in PNNs

Bottleneck shift: from MLPs to Point Operations

Sample: Centric points

Spatial Domain Spatial Domain Feature Domain

Neighbor Search: local information [f0, 3, 5, ...
Sample Gather

Convs
) —> | ——> [f2,f4,f6,..] >
Gather: Map data from spatial Group | R MLPs

domaln to feature domam @® (Centric points Local information

All-to-All Computing /

7

Input Point x N Point
P(llnt CIoudE>[Operaltlons Convs > = Convs > Output
Global Memory Scan P

Stage 1 Stage N

Iterative Computing
The backbone of PNNs Duke

Motivation

Bottleneck shifts to point operations.
Partition can help.

Current Hardware Architecture

e Space-Aware Partition [VLSI'21, ICCAD’23]

°Example: Uniformly Partition Imbalanced point distribution

> Hardware friendly Fail to guarantee accuracy

o Streamed memory access

= [,| Center Core #0-15
Controller .
Sampling [coord.

(a) Baseline (b) Space-Aware

ontrol Module

Core #0-7
Grouping
Mapping Module

Imbalance

Bank[0](4KB

Bank[1](4KB

Accuracy: 62.59%

27
yo0.5 53.79%
0.03ms

Bank[3](4KB

Interface Module

)
)
Bank[2](4KB)
)
)

Efficiency: - Bank[4](4KB

Convolution Modu

Memory Controller

Complexity: - 08 x5 12| 9™

80 Points
Non-Partition

Core #0-7

0
Uniformly Partition

Bank[31](4KB)

Memory Module Pooling Module

Kim et al., Pnnpu: A 11.9 tops/w highspeed 3d point cloud-based neural network processor with block-based point processing for regular dram access. VLSI, 2021.
Zhou et al., An Energy-Efficient 3D Point Cloud Neural Network Accelerator with Efficient Filter Pruning, MLP Fusion, and Dual-Stream Sampling. ICCAD, 2023. Duke

Motivation

Current Hardware Architecture

e Density-Aware Partition [ISCA’22, ASPLOS’25]

o> Example: KD-Tree Exclusive hardware

- Guaranteed accuracy Acceptable when small-scale process

New bottleneck for large-scale process

KD-Tree Sorter o n)
(Exclusive) BS
1024

o Streamed and balanced memory access

(a) Baseline

(c) Density-Aware

20 Strictly
Balance

] Sorting
1
12 1
512

]
Median

2
256@256 256@\256
|
edian edian

Q>

Efficiency: - ¢ 4.03ms

Complexity: - 20 O(n-logn)

Sorted Median
(KD-Tree)

80 Points
Non-Partition

l |
| |
| |
| |
l |
| |
| |
Accuracy: 62.59%: 20 ? 20 | 62.30% & :
| |
| |
| |
| |
| |
| |
| |
| |

Block Size (BS)=64, 1K Points: 15 sorting

) BS=256, 289K Points: 2047 sorting
Feng et al., Crescent: taming memory irregularities for accelerating deep point cloud analytics. ISCA, 2022.

Feng et al., StreamGrid: Streaming Point Cloud Analytics via Compulsory Splitting and Deterministic Termination. ASPLOS, 2025.

Motivation

We hope partition could be

Accurate & Efficient

Fractal Insight

. Inspired by fractal geometry
Real point clouds follows geometry

> Traverse shape, not sort

Duke
1

Motivation

Fractal: Accurate and Efficient

e Shape-Aware Partition

o Streamed memory access

o @uaranteed accuracy

(a) Baseline

Accuracy: 62.59%
Efficiency: -

Complexity: -

80 Points
Non-Partition

Motivation

Inclusive hardware

Efficient for all-scale process

(d) Shape-Aware (Ours)

‘Averaged Midpoint

o Moderately

Balance

;]| 62.03% @
0.04ms

O(n)

Fractal Traverser n
(Inclusive) ~ O(log, E)
1024

[‘] Traversing

Midpoint . 1
495 T 529

Midpoint E:.)
220, 275 | 280", 249

BS=64, 1K Points: 4 traversing
BS=256, 289K Points: 11 traversing

Duke
1

Fractal: Iterative Shape-Aware Partitioning

e Inputs:
o Point cloud
o Threshold (controls block size)

e Each iteration:

o |f block size > threshold
> Traverse points along one axis
o Compute midpoint from min & max
o Partition

Alternate partition axis (x -> vy -> z)

Fractal: Shape-Aware Partition

Shape-Aware (Ours)

|
Y

‘Averaged Midpoin{

> Moderately

Balance
62.03% €2
0.04ms
O(n)

Example for Fractal — 80 Points, threshold 24

OLis[h IR Data Layout in Memory Binary Tree Flow

1 __—"idx| Coordinates i ‘ @
1] (X0,Y0,20)

2 | (X40,Y40,Z40)
3 (X62ay62,262) | ' . @ @
79 o 19 @ (D @

0\ 80 Points]\ 80| (Xs6,Ys56,Z56)

o

Start Fractal, with th=24 Unordered After 3 Fractal Iterations, 4 blocks, all blocks < 24

Duke
1

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24

Check Fractal Binary Tree Flow
1 Check

0 80 Points
80 > 24, do Fractal

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24

1* Fractal Iteration Binary Tree Flow
1| ma)?(‘ Process

min
Q

ol),
Step1: Find min & max along x-axis

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24

1* Fractal Iteration Binary Tree Flow
1 max Process

’
I
I
I
I
I
I
|
I
|
|
I
I
I

min
?

0\)1
Step2 Flnd mldpomt by (min+max)/2

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24

1* Fractal Iteration Binary Tree Flow

! 37 Partition @

Bt ©

0\ L]
Step3: Partition 80 into 43- and 37- point blocks

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24
Binary Tree Flow

Chec \@

1] 43 37

0 J
43 > 24, do Fractal

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24
Binary Tree Flow

Proce \@

T

A)1
Step1: Find min & max along y-axis

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24
Binary Tree Flow

T

Process \

Al '. @ @

Y
L)1
Step2: Find midpoint by (min+max)/2

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24

2" Fractal Iteration Binary Tree Flow

1| 37

' CN
. Partition) @

=
O
o
O
=

Y

Step3: Partition 43 into 19- and 24- point blocks

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24
Binary Tree Flow

1119 37

/N
. @

19 < 24, no Fractal

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24
Binary Tree Flow

1| 19 37

/N
. @D
24 Check

24 == 24 no Fractal

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24

Check Threshold Binary Tree Flow

1| 19 37

/
- Check

Same flow for all Fractal lterations

Not sort, only Linear Traverse

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24

Binary Tree Flow

(43) (7,
19 @) (D @

After 3 Fractal lterations, 4 blocks, all blocks < 24

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24

w Binary Tree Flow

B1 B4 _.| Depth F|rst
Traversal

: /Aa‘s
5 ® @) @

B2 B3
DFT to determine the block order

Fractal: Shape-Aware Partition

Example for Fractal — 80 Points, threshold 24

After Fractal Data Layout in Memory

idx| Coordinates

B B4
—H B

B3 20 B2

B2 s B3

"~~—_[80] (Xs6,Ys6,255) | B4
Original Point Cloud Four Point Blocks Spatially Orgnized

Fractal: Shape-Aware Partition

Extend Fractal from Points to Operations

e Fractal is cheap and scalable. ,
Block-level parallelism

. Local computation and memory access
e Blocks are mutually independent.

B ’ :81][82][83][84:

Fractal)
—> Block-Paralle
Point Operations

B2 T 7 3

81] BZ] B3

~N

Input Point Cloud Four Blocks

Block-Parallel Point Operations

Block-Parallel Point Operations

Leaf Node, also the Bn
Final Block after Fractal

° AL
BIOCk wise Sample Searching Space for Sample O

o Process within current block

° Inter-block parallelism

Search
Space

Inter-block parallelism

(b) Workflows for Block-Parallel Point Operations

Du1)<e
3

Block-Parallel Point Operations

Block-Parallel Point Operations

e Block-wise Neighbor Search

o Expend searching to parent node

o One parent level is sufficient

Block-Parallel Point Operations

_\

Leaf Node, also the
Final Block after Fractal

Searching Space for Sample O

Searching Space for
_ e Neighbor Search
B2 B3
(a) Searching Space within Tree Hierarchy

Bn

-

4
N\

Block-Wise Sample

: Point Index
= »(Bn 5

Block-Wise Point Index 5

»

S
pace] : Neighbor Search

Center
Points

(b) Workflows for Block-Parallel Point Operations

| - Parallel

-

Duké
3

Block-Parallel Point Operations

Leaf Node, also the Bn
Final Block after Fractal

- i ‘
o BIOCk wise Gather I\ ° Searching Space for Sample O

> Same rules as neighbor search Nommoor e | dather

B2 B3
(a) Searching Space within Tree Hierarchy)

: Point Index b
Block-Wise Sample H »(Bn 5

Block-Wise
Neighbor Search

Center Feature -
Feature

Points i Block-Wise Gather
\@ Point Index
Bn) >

(b) Workflows for Block-Parallel Point Operations

L ParaIIeI—

Duké
3

Block-Parallel Point Operations

Block-Parallel Point Operations

Block-wise Sample
Block-wise Neighbor Search
Block-wise Gather

e Eliminate all-to-all computing
e Unlock block-level parallelism

e On-chip feasible

Block-Parallel Point Operations

B3

Leaf Node, also the Bn
Final Block after Fractal

Searching Space for Sample Q

Searching Space for
Neighbor Search / Gather o

(a) Searching Space within Tree Hierarchy

<
<

Block-Wise Sample

Search .

Block-Wise

.| Neighbor Search

Feature
Center (BParent

Points

Point Index

Point Index
\(Bn }) =

FractalCloud: Point Cloud Accelerator

Systolic Array

(Feature Computation\ [Memory Modules | [Points Operations)

. (" Systolic Array Global Buffer .
Network on Chip (NOC) 3 X X Multi-Banked b Fractal Engine

Feature

Direct Memory Access (DMA) X X Weight [Reuse&Skip [}
® ® ® Coordinat IEnabled Point Unit
RISC-V MCU BDW, | |
Memory Interface

Gather Unit
SRAM (274KB) __ooling ot Noc | [ovA

_ ') . y RISC-V

DRAM

Fractal Engine

Reuse-Skip Enabled Point Unit (RSPU)

Hardware Architecture

Fractal Engine

e Reconfigurable structure for multiple partitions:

o Fractal, KD-Tree, uniform partition.

N\

S

(b) Points in Buffer

idx | poinis idx | points
1
2

P
. (a) Hardware Architecture for Fractal Engine
e Fractal: Data
— Fractal

i 19

. Mid — Uniform Partition | 4 5

o Simple Hardware — > KD-Tree K e i
Partition - 44 44

. Midpoint Comp.
o |nclusive > l argMax P P 2 L ot \ o

-

. . > argMin +®+ >> iBD-poinI (x)\ 80-point (x, y)‘ \ 43-point (y)

o Fully pipelined : Midéoﬁognp- | Parti. 80 (x) Parti. 43 (y)
[] . x .d

T ™€ Mid. Comp. g

—""[Counter] 43(y) mi

-

Parti. 37 (y)
Mid. C L
(c) Workflow o P /Il;

H'{ Sorter] \ S7(Y) J
N

[teration O lteration 1 lteration 2 Timf

1 1

17

20

-
B

)\ Organized in Blocks

37-point (y)

Hardware Architecture

Reuse Skip Enabled Point Unit (RSPU)

Unified module for all point operations

FPS, Ball Query, KNN (Interpolation)

Blocks run with DFT order

e Flexible Block-Parallel Workflow
Block-Wise Sample

o Inter-block parallelism
Block-Wise Neighbor Search

o Intra-block parallelism

Hardware Architecture

Single RSPU

-

Buffer

| Distance ® H, [|

Compute @

A

. " -
Previous Distance

Top-K |—
Update
< ¢ ArgMax > Buffer

$
Window Check

LA

(a) Hardware Architecture of RSPU —> Interpolation

Radius

LA

— Farthest Point Sample
— Ball Query

s

Global Buffer

B1/ Bi

N (|

—> RSPUJ

x N

By / Bin

> RSPUNJ

L

Input from Buffer)

.. P4 P3 P2 P1 Po Data
11({110]0[1|Mask

S -

window L Addr
L]

J

Searching

Space of B;|

(b) Inter and Intra-Block Workflows)

Inter-Block —»
Intra-Block —»

\

Addr Addr

(c) Window Check Module)

Multiple RSPUs

Duke
3

Flexible Block-Parallel for Multiple RSPUs

e Block-Wise Sample: inter-block parallelism

e \Window check: Skip redundant

e Each RSPU handles one FPS within one block computation

f A
Distance @ Top# Update
Compute (¥) < — ArgMax Buffer

|4

P

- - >
Previous Distance

— Farthest Point Sample

VAN
Single RSPU

~) [

— ~

— RSPU,
Lo J
X

Input from Buffer
. P4 P3 P2 P1 Po Data

- 1[1]0]0]1]Mask
- i
Rig RSPUN) vwmdow Addr

Inter-Block —» LOD i@?—» Eg;t
Addr '

Multiple RSPUs | (¢) Window Check Module

*x N

Multiple
RSPUs

A
.

lobal Buffer

N

J

Hardware Architecture

Reuse-and-Skip-enabled Point Unit (RSPU)

e Block-Wise Neighbor Search: intra-block parallelism e Data reusing from
parent node

e Each RSPU process different centric points in same block

e — ; _
Distance (X) H, —L_TopK

\

ArgMax

Buffer Compute (+) <
. 11t
™ Window Check Radius A —» Ball Query
— Single RSPU —> Interpolation |
e = ﬁ'/
B3 > RSPU;,

W,
XN

—a____ K <
B3 > RSPU,

Multiple
RSPUs

/

earching
Space of B3| Intra-Block —»

Multiple RSPUs

-

| Global Buffer

Hardware Architecture

HW Implementation

Chip Layout of Proposed FractalCloud Detailed Specifications

Technology 28nm
Die Area 3 mm°
Core Area 1.5 mm°

e Small hardware:
SRAM Size 274 KB
o TSMC 28nm di i bl
o Core Area: 1.5 mm? * _ ' Ave. Power N
o Power: 0-58 W Mea ‘ Area Breakdown Energy Breakdown

1.2"(9
° Frequency: 1 GHz

LR AR AR L)
dodoavIVYYYY

TIVIFHha000 440
K R RN)

AfArAaTYIYYYY
RN EE)

SARRNAN N R UCRLE R R R Fabsiprenr

#e PE Array B Memory [RSPU

Duke

Hardware Implementation

Evaluation

e Network Benchmarks
° Inputs scale from 1K to 289K
> Three PNNs
o Three Tasks
o Three Datasets

e Hardware Architectures
o Same PE cores

° Fixed Frequency
o Equal DRAM Bandwidth

Evaluation

Model

Notation Task Dataset Scene

PointNet++
PointNe Xt

PN++ (¢)
PNXt (¢)

Classification ModelNet40 Object

PointNet++
PointNeXt

PN++ (ps)

Part Segmentation
PNXt (ps)

ShapeNet Object

PointNet++
PointNeXt

PointVector

PN++ (s)
PNXt (s)
PVr (s)

Segmentation

Accelerator

Mesorasi [27] PointAce [28] Crescent [29] FractalCloud

Cores

16x16 16x16 16x16 16x16

SRAM (KB)

1624 274 1622.8 274

Frequency

1GHz 1GHz 1GHz 1GHz

Area (mm?2)

4.59 1.91 4.75 1.5

DRAM
Bandwidth

DDR4-2133 DDR4-2133 DDR4-2133 DDR4-2133
17GB/s 17GB/s 17GB/s 17GB/s

Technology

28nm 28nm 28nm 28nm

Peak
Performance

512 GOPS 512 GOPS 512 GOPS 512 GOPS

Network Accuracy

E=S Original (PointAcc) Mesorasi IEER Crescent PNNPU
M FractalCloud

=
o
o 80
| -
5
@)
@)
<L

(o)}
o

Guaranteed accuracy:

Less than 0.7% accuracy loss for all models
Better performance than SOTA works

Evaluation

Performance Gain over SOTA accelerators

E== Mesorasi

1 PointAcc # Crescent

FractalCloud

otheXt on 53DIS Test

8K 33K

131K 289K

PomtVector on SBDIS -Test B
8K 33K 131K 289K

=
o
W

Energy Saving
(=]
<

Evaluation

180

66

PN++(c

216

53//

376

135
63 23

il

PNXt (c) PN++ (pS) PNXt (ps) PN++ (s) PNt (S) PVr()

415.96

1

667

81 94 |{ 54 46

[N

46 48

‘/

33K

Huge performance:
Average 21.7x speedup

PotheXt on S3DIS-Test

131K 289K

Average 27x energy saving

3968
506 826
194244 168160

/| 1%6 103
7
10

PomtVector on S3DIS Test
33K 131K 289K

FractalCloud for Efficient PNN Acceleration

S)
2

am

e Application: AR/VR, automatic drive, drones, ...
e From small to large input processing

-------+

A 2 A
N q g
”@;;ii;} ‘fﬁ» <:{:T 4’5}
\> n
g
\ J/l \ - " Latency —— Base —— Our
& £ ;o
‘- (‘ .: o : - §
» o - M 5

¢ | Memory =1 Base — Our

Latency (ms)

g ?’ &
FractalCloud Optimization

1K @ 2017 (Simple) 300K @ 2024 (Complex)
Object Classification Semantic Segmentation 21.7x speedup
Duke

Conclusion

Accuracy and Efficiency Block-Parallel Hardware

. e B | s i
| | O exz) 15,1 | FractalCloud for Efficient o) o

N| N —» Ball Query
(a) Hardware Architecture of RSPU — Interpolation)

- B2 PNN Acceleration o) {-J"E?‘Sf”sfﬁ% J

S ~[1]1]0o] 0] 1] Mask

44 B3 : %RSUPN] window " Addr
¥

Searching Inter-Block —» Lop |3 9 » Next

80 (X56 Y56 Z56) B4 Space of B; Intra-Block —» Addr Addr

’ ’ L (b) Inter and Intra-Block Workflows){__(c) Window Check Module

Reuse-and-Skip-Enabled
Fractal: Shape-Aware Partition e Dedicated Point Unit

Architecture

Multiple
RSPUs

J

Spatially Orgnized

Local Searchfl Data Reuse

Leaf Node, also the h

Final Block after Fractal

Bn

) Searching Space for Sample

Searching Space for Q
N I =l Neighbor Search / Gather
B4 B5 B6 DFT

(a) Searching Space within Tree Hierarchy 21 . 7 X S peed u p
et e 27 X Energy Save

Search__

Space Bearon - " Elﬁgk-\gise ; Point Index ——
ﬁ Coord. eighbor Searc F'arallel-

Center reatre Feature

Points N Wi . &) i
~. ———, Point Index_| Block-Wise Gather ol TR e
(_Bn) » Parallel o b b e oo 1l o ot 8 bl (| o

(b) Workflows for Block-Parallel Point Operations

Block-Parallel Point Operation Area: 1.5mm?2, Power 0.58W

TV 0000440 Pherbbeen

(RS AAARALS

Conclusion

Acknowledgements

PRATT SCHOOL of
ENGINEERING

Du1(<e

Center of Computational Evolutionary Intelligence (CEl)

FractalCloud Thanks for Listening.
HPCA 2026

1 Codes are open-sourced at
p, https://github.com/Yuzhe-Fu/FractalCloud

Authors:

Yuzhe Fu, Changchun Zhou,
Hancheng Ye, Bowen Duan, Qiyu
Huang, Chiyue Wei, Cong Guo,
Hai Li, and Yiran Chen

Center of Computational Evolutionary Intelligence (CEl)

https://github.com/Yuzhe-Fu/FractalCloud
https://github.com/Yuzhe-Fu/FractalCloud
https://github.com/Yuzhe-Fu/FractalCloud

	FractalCloud
	Slide 1: A Fractal-Inspired Architecture for Efficient Large-Scale Point Cloud Processing

	BackGround
	Slide 2
	Slide 3
	Slide 4

	Motivation
	Slide 5: Poor scaling in PNNs
	Slide 6
	Slide 7: Point operations in PNNs
	Slide 8: Point operations in PNNs
	Slide 9: Current Hardware Architecture
	Slide 10: Current Hardware Architecture
	Slide 11: Three roads for Current Architecture
	Slide 12
	Slide 13: Fractal: Accurate and Efficient

	Fractal
	Slide 14: Fractal: Iterative Shape-Aware Partitioning
	Slide 15: Example for Fractal – 80 Points, threshold 24
	Slide 16: Example for Fractal – 80 Points, threshold 24
	Slide 17: Example for Fractal – 80 Points, threshold 24
	Slide 18: Example for Fractal – 80 Points, threshold 24
	Slide 19: Example for Fractal – 80 Points, threshold 24
	Slide 20: Example for Fractal – 80 Points, threshold 24
	Slide 21: Example for Fractal – 80 Points, threshold 24
	Slide 22: Example for Fractal – 80 Points, threshold 24
	Slide 23: Example for Fractal – 80 Points, threshold 24
	Slide 24: Example for Fractal – 80 Points, threshold 24
	Slide 25: Example for Fractal – 80 Points, threshold 24
	Slide 26: Example for Fractal – 80 Points, threshold 24
	Slide 27: Example for Fractal – 80 Points, threshold 24
	Slide 28: Example for Fractal – 80 Points, threshold 24
	Slide 29: Example for Fractal – 80 Points, threshold 24

	Block-Parallel Point Operations
	Slide 30: Extend Fractal from Points to Operations
	Slide 31: Block-Parallel Point Operations
	Slide 32: Block-Parallel Point Operations
	Slide 33: Block-Parallel Point Operations
	Slide 34: Block-Parallel Point Operations

	Hardware Architecture
	Slide 35: FractalCloud: Point Cloud Accelerator
	Slide 36: Fractal Engine
	Slide 37: Reuse Skip Enabled Point Unit (RSPU)
	Slide 38: Flexible Block-Parallel for Multiple RSPUs
	Slide 39: Reuse-and-Skip-enabled Point Unit (RSPU)

	Results
	Slide 40: HW Implementation
	Slide 41
	Slide 42: Network Accuracy
	Slide 43: Performance Gain over SOTA accelerators

	Conclusion
	Slide 44: FractalCloud for Efficient PNN Acceleration
	Slide 45
	Slide 46: Acknowledgements
	Slide 47: FractalCloud HPCA 2026

