
An Energy-Efficient 3D Point Cloud Neural Network Accelerator
With Efficient Filter Pruning, MLP Fusion, and Dual-Stream Sampling

1Changchun Zhou, 1Yuzhe Fu, 1Min Liu, 1Siyuan Qiu, 1Ge Li, 2Yifan He, and 1Hailong Jiao
1School of Electronic and Computer Engineering, Shenzhen Graduate School, Peking University, Shenzhen, China

2Reconova Technologies Co., Ltd., Xiamen, China

Email: jiaohailong@pku.edu.cn

Abstract—Three-dimensional (3D) point cloud has been
employed in a wide range of applications recently. As a powerful
weapon for point cloud analysis, point-based point cloud neural
networks (PNNs) have demonstrated superior performance with
less computation complexity and parameters, compared to sparse
3D convolution-based networks and graph-based convolutional
neural networks. However, point-based PNNs still suffer from
high computational redundancy, large off-chip memory access,
and low parallelism in hardware implementation, thereby
hindering the applications on edge devices. In this paper, to
address these challenges, an energy-efficient 3D point cloud
neural network accelerator is proposed for on-chip edge
computing. An efficient filter pruning scheme is used to skip the
redundant convolution of pruned filters and zero-value feature
channels. A block-wise multi-layer perceptron (MLP) fusion
method is proposed to increase the on-chip reuse of features,
thereby reducing off-chip memory access. A dual-stream
blocking technique is proposed for higher parallelism while
maintaining inference accuracy. Implemented in an industrial 28-
nm CMOS technology, the proposed accelerator achieves an
effective energy efficiency of 12.65 TOPS/W and 0.13 mJ/frame
energy consumption for PointNeXt-S at 100 MHz, 0.9 V supply
voltage, and 8-bit data width. Compared to the state-of-the-art
point cloud neural network accelerators, the proposed
accelerator enhances the energy efficiency by up to 66.6× and
reduces the energy consumption per frame by up to 70.2×.

Keywords—Three-dimensional point cloud, off-chip memory
access, data reuse, high parallelism, speedup, energy efficiency.

I. INTRODUCTION

In recent years, point cloud is increasingly used in various
applications, such as cars, robots, drones, and depth cameras in
smartphones. Point cloud demonstrates significant advantages
such as easy acquisition, high resolution, and efficient data
format. Therefore, point cloud has become an important
modality as important as images and videos for deep learning
applications such as autonomous driving, photography, virtual
reality (VR), and augmented reality (AR). Deep neural
networks (DNNs) have been utilized for point cloud analysis.
The mainstream point cloud neural networks (PNNs) can be
grouped into three categories: sparse 3D convolution-based
networks [1], [2], [3], graph-based convolutional neural
networks [4], [5], [6], [7], [8], and point-based PNNs [9], [10],
[11], [12], [13]. In particular, point-based PNNs, a class of
neural networks developed from PointNet [9], perform
outstandingly in point cloud analysis. The point-based PNNs
can directly process points to extract features and solve the
issues of disordered and discrete data. Furthermore, the
mapping operations (including sampling and grouping) in
point-based PNNs enable the networks to have multi-level and
strong feature extraction capability, thereby achieving high

inference accuracy and robustness. The use of shared-weight
MLP and pooling in point-based PNNs makes the models
compact with light computation.

When deploying PNNs on edge devices, such as wearable,
mobile, and Internet-of-Things (IoT) devices, which require
real-time interactions with humans and instantaneous
perception and comprehension of the environment, both high
inference accuracy and minimal latency/energy consumption
are crucial. However, the grouping operations in point-based
PNNs, such as k-nearest neighbors (KNN) and ball query (BQ),
lead to irregular indexing patterns. These irregular patterns
degrade the off-chip memory access bandwidth efficiency
significantly. The limited data reuse in the MLP layers of PNNs
also results in substantial off-chip memory access, which is
exacerbated by the large amount of computation and parameters
in PNNs. Furthermore, the commonly used farthest point
sampling (FPS) algorithm is inherently sequential and becomes
a latency bottleneck in PNN accelerators. Therefore, there is an
urgent need to design a point cloud neural network accelerator
that minimizes off-chip memory access and enhances
computation parallelism of the sampling operations, while
reducing the amount of computations.

On-chip PNN accelerators have been investigated
sporadically in recent years. For sparse 3D convolution-based
PNNs, in [14], a customized skipping index rule table and an
efficient search method are proposed for accelerating
MinkowskiNet [2] to reduce the hardware overhead for storage
management. However, [14] suffers from high energy
consumption caused by enormous computation and movement
of index. In [15], an accelerator for SECOND network [1] is
proposed. The coordinate (COO) and feature map are block-
partitioned according to the COO, eliminating the overhead of
off-chip gathering and scattering, and enabling efficient
continuous block-level off-chip memory access. However, [15]
suffers from significant repetitive off-chip memory access and
on-chip computation for the boundary voxels between blocks.

For graph-based PNNs, Point-X [16] extracts and exploits
the spatial locality in point cloud data for efficient processing
DGCNN [4]. Point-X clusters the point cloud and assigns each
cluster to a compute tile to maximize intra-tile computational
parallelism and minimize inter-tile data movement. However,
Point-X is highly customized for DGCNN and lacks the
generality for other PNNs.

For point-based PNNs, a delayed-aggregation method is
proposed in Mesorasi [17] to increase the reuse of point features.
Delayed-aggregation moves aggregation from before multiple
MLPs to after multiple MLPs in point-based PNNs. However,
the delayed-aggregation method reverses the computation order
of centralization and activation of features, resulting in unstable
inference accuracy and up to 0.9% accuracy loss. Furthermore,
the number of the output feature map channels often doubles

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CA
D5

73
90

.2
02

3.
10

32
37

04

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 15,2023 at 08:24:11 UTC from IEEE Xplore. Restrictions apply.

compared to that of input feature maps per MLP, making the
delayed aggregation a new latency bottleneck beyond MLPs.
Evolved from Mesorasi, Crescent [18] focuses on eliminating
the irregular memory access of features and coordinates. An
approximate neighbor search method is proposed to reduce the
data movement by locally searching neighbor points with
Crescent. Meanwhile, the access conflicts of memory banks are
selectively eliminated by copying the access data to
accommodate multiple port requests. However, up to 1%
accuracy loss is caused by the two approximation techniques.
In [19], PNNPU is proposed to accelerate VoteNet [20]. Point
cloud is mapped and convolved in blocks to reduce the
complexity of mapping operations and eliminate the irregular
off-chip memory access of MLPs. However, the proposed
blocking method suffers from a significant accuracy loss in
small-scale scenarios (e.g., 1k input points). Furthermore, the
large number of computations and off-chip memory access
involved in the convolutions of PNNPU still remain as great
challenges. A configurable PNN accelerator, PointAcc, is
proposed in [21] to support multiple types of PNNs. However,
the off-chip memory access of coordinates and features is large,
while the reuse rate of the mapping hardware is low due to the
configurability of the accelerator.

To address the existing challenges, including large
computational complexity, off-chip memory access, accuracy
loss, and low parallelism, an energy-efficient and low-latency
PNN accelerator is proposed for real-time 3D point cloud
inference on edge devices. This accelerator supports the
mainstream point-based PNNs, e.g. PointNet [9], PointNet++
[10], PointMLP [11], and PointNeXt [12]. An efficient filter
pruning is applied to skip the redundant convolution of pruned
filters and zero-value feature channels. Meanwhile, a large
amount of inefficient off-chip memory access of grouping point
features is eliminated. A block-wise multi-layer perceptron
(MLP) fusion method is proposed to improve the on-chip reuse
of features and reduce off-chip memory access of point features
in MLPs. To eliminate the latency bottleneck of sampling, a
dual-stream blocking technique is proposed for higher
parallelism of sampling while maintaining inference accuracy.
Specialized architecture and computation flow are proposed to
enhance the effectiveness of the proposed techniques.
Implemented in the TSMC 28-nm CMOS technology, the
proposed accelerator achieves a remarkable effective energy
efficiency of 12.65 TOPS/W and 0.13 mJ/frame energy
consumption for PointNeXt-S at 100 MHz, 0.9 V supply
voltage, and 8-bit data width. Compared to the state-of-the-art
PNN accelerators, the proposed accelerator enhances the
energy efficiency by up to 66.6×, reduces the energy
consumption by up to 70.2×, and improves the overall
efficiency (Frame/mm2/mJ) by up to 127.5×.

The paper is organized as follows. The background of point-
based PNNs is introduced in Section II. The system architecture
is portraited in Section III. The proposed techniques that enable
low latency, high parallelism, and minimal off-chip memory
access are presented in Section IV. The experimental results of
the proposed PNN accelerator are discussed in Section V. The
paper is concluded in Section VI.

II. BACKGROUND

In this section, the fundamental concepts of point cloud,
mapping operation, and MLP are provided. The backbone of

point-based PNNs and a classical point-based PNN,
PointNeXt-S, are introduced.

A. The Backbone of Point-based PNNs
The point cloud is a set of points x = {xk} = {(pk, fk)}, where

pk = (xk, yk, zk) is the coordinate of the kth point, and fk is the
corresponding 1-D feature vector. As shown in Fig. 1c, the
backbone of point-based point cloud neural network
architecture is composed of multiple stages. Each stage
contains a mapping layer, several consecutive MLPs, and a
pooling layer. The mapping layer contains sampling and
grouping operations and aims to build a relationship between
the input and output points as a mapping. These operations
usually only take point coordinates as input. Then, the
corresponding features of input points are grouped according to
the mapping. The convolutions in the MLPs are performed on
all the feature groups. Then, max-pooling is performed on the
output results of each group to obtain the corresponding output
point feature.

Fig. 1. The backbone of point-based PNNs. (a) FPS operation process. (b)
BQ operation process. (c) The backbone overview of point-based PNNs. (d)
The change of points within a stage.

Sampling. Point-based PNNs typically employ the farthest
point sampling (FPS) algorithm for the sampling process,
where output points are iteratively sampled from the input point
cloud. FPS starts by randomly selecting an initial point from the
point cloud. In each iteration, the point that has the largest
distance to the current output point cloud is added to the output
point cloud. For example, in Fig. 1a, the first selected output
point is assumed to be a. Since b has the largest distance from
a, b is chosen as the second output point.

Grouping. After sampling, grouping refers to the process of
finding the nearest neighbor points for each point of the output
point cloud. Note that the coordinates of the input and output
points remain unchanged, i.e., the coordinates of input point a
and output point a' are the same. Point-based PNNs typically
employ KNN or BQ for the grouping process. In KNN, the top-
k nearest neighbor points are selected based on their distances
to the output point. BQ further requires these neighbor points to
lie within a sphere of radius R. As illustrated in Fig. 1b, K, the
number of the required nearest neighbor input points for the
output point a', is three. Four input points a, c, d, and e are
identified within the sphere centered at the output point a'. BQ

Sa
m

pl
in

g

G
ro

up
in

g

M
LP ...

M
LP

N
Mapping MLPs Aggregation

M
ax

 P
oo

lin
g

Stage 1 Stage 2

a

b

e
d c

b
f

e
d c

f a
b

f

e
d c

a
b

f

e
d c

a a(a')

b

e
d c

f
b

e
d c

f

(c)

(a) (b)

p0

p7

p2

p3

p4p5

p6

p8

p1

p9

p10

p11p12

p13

S G

F0
p0

F2
p0

F3
p0

F4
p0

F5
p0

F7
p0

F8
p1

F9
p1

F10
p1

F11
p1

F12
p1

F1
p1

M

R2
p0

R3
p0

R4
p0

R5
p0

R0
p0

R7
p0

R8
p1

R9
p1

R10
p1

R11
p1

R12
p1

R1
p1

A
p14

p15

F'0

F'1

····

(d)

a(a')

K=3

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 15,2023 at 08:24:11 UTC from IEEE Xplore. Restrictions apply.

then selects the three nearest points a, d, and e. Then, points a,
d, and e are considered as the group of the output point a'. The
relationship between the output point a' and input points a, d,
and e is the mapping of output point a'. The corresponding
features of points a, d, and e are also grouped and then passed
to the following MLPs to generate the feature of output point a'.

MLPs. MLP is a kind of convolution layer with a kernel size
of 1×1. In the MLPs of point-based PNNs, filters are shared
across all input point features. The change of points within a
stage is shown in Fig. 1d, where p represents the coordinates of
input points, F represents the grouped features, and R
represents the partial sums after MLPs. MLPs are performed on
the grouped input features to obtain partial sums. Multiple
MLPs are stacked in each stage to further extract features.

Max-Pooling. In point-based PNNs, max-pooling is
employed to aggregate the per-point partial sums obtained by
MLPs from all neighbor points. For example, the channel-wise
maximum values are computed among the partial sums R0, R2,
R3, R4, R5, and R7 to obtain the output point feature F0', as
shown in Fig. 1d.

B. The Network Architecture of PointNeXt-S
PointNeXt is a state-of-the-art and scalable point-based

PNN for processing point cloud and significantly outperforms
other PNNs. Optimized from the classical PointNet++ [10],
PointNeXt-S, a small variant of PointNeXt, introduces residual
architecture into PointNeXt and mainly consists of five stages,
as shown in Fig. 2. PointNeXt-S outperforms PointNet++ while
maintaining similar amount of model parameters and
computational complexity.

Fig. 2. The network architecture of PointNeXt-S.

To train and compress neural networks, we use Distiller [22],
an open-source Python package for neural network
compression research that is developed by Intel. ModelNet40
[23], a classical 3D point cloud dataset of 40 object classes and
12311 samples, is typically applied for point cloud neural
network evaluation. Therefore, ModelNet40 is used as the
benchmark for classification with PointNeXt-S.

III. SYSTEM ARCHITECTURE OVERVIEW

The system architecture of the proposed point cloud
accelerator is introduced in this section. To obtain high energy
efficiency and low latency, the hardware architecture is
optimized for high data reuse, high parallelism, redundant
operation skipping, as well as network configurability.

The hardware architecture of the proposed accelerator is
shown in Fig. 3. The accelerator consists of a control module, a
mapping module, a convolution module, a pooling module, a
memory module, and an interface module. The mapping
module includes a sampling submodule performing FPS and a
grouping submodule performing KNN or BQ. The mapping
module can be configured to support different numbers of input
points and output points. The sampling submodule contains 16

cores, while the grouping submodule contains 8 cores. The
convolution module is composed of 4 cores, each of which is a
systolic array of 16×16 processing elements (PEs). The pooling
module contains 8 cores, each of which consists of 32
comparators. The number of cores in each module is
determined by the workload and latency requirements of each
type of operations in point-based PNNs. The memory module
is composed of 32 static random-access memory (SRAM)
banks of 4KB. Due to the varied bandwidth and storage
requirements of the mapping module, the convolution module,
and the pooling module during the inference, the memory
module can be dynamically allocated for these modules.

Fig. 3. The hardware architecture of the proposed point cloud neural network
accelerator.

An instruction set architecture (ISA) is designed for the off-
chip host to control the accelerator. During neural network
inference, the off-chip host sends a set of instructions to the
control module. The control module decodes the instruction and
then controls the execution of the mapping module, the
convolution module, and the pooling module, as well as the
allocation of the memory module. As mentioned in Section II-
A, the mapping module constructs the mappings between the
input points and the output points. Then, the required input
point features are grouped for each output point according to
the built mappings. The multiple cores of the mapping module
provide sufficient performance to meet the throughput of
mappings required by the convolution module. The dataflow of
the convolution module is output stationary (OS) dataflow [24].
The convolution module convolves the input feature groups
with filters to obtain partial sum groups. The pooling module
obtains the output point features by performing max-pooling on
the partial sum groups. The proposed accelerator adopts a
pipelined dataflow from overall architecture to
microarchitecture for higher hardware utilization. The multi-
core schemes are employed for higher parallelism and
bandwidth utilization.

IV. OPTIMIZATION TECHNIQUES

In this section, three techniques are proposed to enhance the
energy efficiency and shorten the latency of the PNN
accelerator. Firstly, to reduce the high energy consumption and
long latency caused by convolution, an efficient filter pruning
is proposed. The redundant convolution of pruned filters and
zero-value feature channels is skipped, while a large amount of

FC
 (5

12
)

FP
S

&
BQ

M
ax

Po
ol

 1
x3

2

In
pu

t

FP
S

&
BQ

M
ax

Po
ol

 1
x3

2

FP
S

&
BQ

M
ax

Po
ol

 1
x3

2

FP
S

&
BQ

M
ax

Po
ol

 1
x3

2

FP
S

&
BQ

M
ax

Po
ol

 1
x6

4

FC
 (2

56
)

FC
 (4

0)

O
ut

pu
t

Stage1 Stage2 Stage3 Stage4 Stage5

S0
C

0

S1
C

0
S1

C
1

S1
C

2

S2
C

0
S2

C
1

S2
C

2

S3
C

0
S3

C
1

S3
C

2

S4
C

0
S4

C
1

S4
C

2

S5
C

1
S5

C
2

FC
0

FC
1

FC
2

C
on

v
(6

4
fil

te
rs

)
C

on
v

(3
2

fil
te

rs
)

C
on

v
(6

4
fil

te
rs

)

C
on

v
(3

2
fil

te
rs

)

C
on

v
(1

28
 fi

lte
rs

)
C

on
v

(6
4

fil
te

rs
)

C
on

v
(1

28
 fi

lte
rs

)

C
on

v
(2

56
 fi

lte
rs

)
C

on
v

(1
28

 fi
lte

rs
)

C
on

v
(2

56
 fi

lte
rs

)

C
on

v
(5

12
 fi

lte
rs

)
C

on
v

(2
56

 fi
lte

rs
)

C
on

v
(5

12
 fi

lte
rs

)

C
on

v
(5

12
 fi

lte
rs

)
C

on
v

(5
12

 fi
lte

rs
)

In
st

r.
M

em
. Center

Controller

M
em

or
y

C
on

tro
lle

r

PE PE PE

PE PE PE

Bank[31](4KB) Core #0-7

Pooling Module

Convolution Module

Mapping Module

IFM
OFM

Wgt

Memory Module

Control Module Map

Map
FM

Coord.

FM
In

te
rf

ac
e

M
od

ul
e

…

Core #0-15

Core #0-7

Sampling

Grouping

Core #0-3

Bank[0](4KB)

Bank[1](4KB)

Bank[2](4KB)

Bank[3](4KB)

Bank[4](4KB)

Coord.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 15,2023 at 08:24:11 UTC from IEEE Xplore. Restrictions apply.

inefficient off-chip memory access of grouping point features
is eliminated. Secondly, a block-wise multi-layer perceptrons
(MLP) fusion is proposed to increase the on-chip reuse of
features and significantly reduce off-chip memory access of
point features in MLPs. Thirdly, to eliminate the latency
bottleneck of sampling, a dual-stream blocking method is
proposed to enhance the parallelism of sampling while
maintaining the inference accuracy.

A. Efficient Filter Pruning (EFP)
Similar to 2D-CNN, the convolution operations, including

MLPs and FCs, still dominate the computation and data storage
of point-based PNNs, as shown in Fig. 4a and Fig. 4b. High
energy consumption and long latency are caused by the
computation and off-chip memory access, respectively,
involved in convolutions. Meanwhile, the grouping operations,
such as k-nearest neighbors (KNN) and ball query (BQ) in
point-based PNNs, lead to irregular off-chip memory access of
point features. Therefore, the off-chip memory access
bandwidth efficiency of PNNs is significantly degraded. An
efficient model compression method to accommodate more
point features on chip is desirable. Prior works [25] have shown
that significant redundancy exists in 2D-CNN, so that a large
number of weights and activations can be set to zero without
accuracy loss, which is also verified in this work for point-based
PNNs. In a convolution layer, element sparsity is the ratio of
zero-value elements in weights or activations, while channel
sparsity is the ratio of zero-value channels in filters or input
features. All elements are zero in a zero-value channel.
Including these zeros increases data storage and wastes energy
and computation time. Skipping these zeros in computation
does not impact the network accuracy at all. Therefore,
effectively skipping zero channels can significantly reduce the
inference time and energy consumption of the accelerator.

After linear quantization to fixed-point 8-bit integers, the
element sparsity of original weights and activations in
PointNeXt-S is 2.07% and 41.75%, respectively. The element
sparsity is low and unstructured, not friendly for hardware
acceleration. An efficient and structured pruning method is
desirable. Since the contribution of different filters to the
network accuracy varies greatly, some less important filters can
be directly pruned without accuracy loss. Meanwhile, note that
in the MLPs of point-based PNNs, the filters are reused in only
one dimension across input points, rather than in two
dimensions such as 2D-CNN. Therefore, in point-based PNNs,
a greater number of filters can be pruned with minimal impact
on the output features and inference results compared to 2D-
CNN. An efficient filter pruning (EFP) is proposed in this work.
The overall pruning rate of filters is set to 78%. The pruning
rate of each layer is determined based on the sensitivity analysis
by Distiller. After filter pruning, the channel sparsity of features
and filters for each layer is significantly improved, as shown in
Fig. 4c. Since the batch normalization among MLPs is removed
in PointNeXt-S, the pruned filters in the current layer can also
introduce the corresponding zero-value channels of the input
feature in the next layer, increasing the overall channel sparsity
of features from 15.7% to 61.78%. Meanwhile, the convolution
of the zero-value channels of input features and the
corresponding channels of the filters in the next layer is
redundant. Consequently, these zero-value channels in the
filters of the next layer can be further pruned, improving the

overall channel sparsity of filters from 78% (the overall pruning
rate of filters) to 96.6%. The OS dataflow of the convolution
module provides strong support for structured pruning,
resulting in minimal hardware overhead. After applying EFP in
PointNeXt-S, the model parameters and computational
complexity are significantly reduced by 29.4× and 12.4×,
respectively, as shown in Fig. 4d. Furthermore, the input point
features of each stage can be stored on-chip because the zero-
value channels of input point features introduced by EFP are
not stored, thereby eliminating a large amount of inefficient off-
chip memory access of grouping point features and
significantly shortening the latency.

(a) (b)

(c)

(d)
Fig. 4. Efficient filter pruning (EFP) in PointNeXt-S. (a) Computation and
(b) data storage breakdown of each type of operations in PointNeXt-S. (c)
Channel sparsity of input features and filters after the original PointNeXt-S is
quantized to fixed-point 8-bit integers without pruning and after filters of the
quantized PointNeXt-S are further pruned by 78%. (d) Reduction of model
parameters and computational complexity after filters are pruned by 78%.

B. Block-wise MLP Fusion (BMF)
As shown in Fig. 1c, point-based PNNs are composed of

multiple consecutive stages, each of which contains a series of
MLPs. In terms of size, the filters are light in the shallow stages
while heavy in the deep stages in the original point-based PNNs,
such as PointNeXt-S, as shown in Fig. 5a. However, different
from 2D-CNN, point-based PNNs contain grouping operations,
as mentioned in Section II-A. As shown in Fig. 5c, the input
point features of the current stage are grouped to generate the
grouped input point features. Note that the size of the grouped
point features is K× (e.g. 32× in PointNeXt-S) larger than the
original input point features of the current stage. The grouped
output point features are performed aggregation after the
convolution of MLPs and thus reduced by K×. Namely, the

Grouping
0.4%

Pooling
2.1%

Sampling
0.5%

Convolution
97.0%

Grouping
1.2%

Pooling
1.5%

Sampling
0.3%

Convolution
97.0%

Computation Breakdown Data Storage Breakdown

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 15,2023 at 08:24:11 UTC from IEEE Xplore. Restrictions apply.

point features among MLPs are dilated by K×, compared to the
point features among stages. Therefore, the size of features is
larger than the size of filters in most stages. For example, in the
shallow stages of the original PointNeXt-S, the features
dominate the storage, reaching 32× the size of the filters, and
therefore cannot be completely stored on chip. After EFP, the
features are even 51.4× larger than the filters in the pruned
PointNeXt-S.

(a) (b)

(c)

(d) (e)

Fig. 5. Block-wise MLP fusion (BMF). (a) The size of filters in each stage of
the original PointNeXt-S. (b) The hardware implementation of BMF. (c) The
data flow of block-wise and pipelined MLP fusion. (d) The breakdown of off-
chip memory access after EFP is applied. (e) The memory access reduction of
each layer after BMF.

The on-chip reuse of point features in point-based PNNs is
also significantly reduced due to the 1×1 kernel size of MLPs,
compared to 2D-CNNs. For example, the reuse of features in
PointNeXt-S is reduced by ~9×, compared to VGG-16 [26]. In
the conventional data flow, after the grouped input point
features of the current MLP are convolved, the grouped input
point features of the next MLP begin to be computed. Due to
these two reasons, namely the larger feature size and the lower
on-chip reuse of features, the off-chip memory access of input
and output features is significantly increased. As shown in Fig.
5d and Fig. 5e, in the conventional dataflow, the off-chip
memory access is large, while the features dominate the off-
chip memory access. Therefore, the limited interface bandwidth
cannot meet the requirement of the convolution module and
pooling module, causing low hardware utilization and long
latency.

To address the large off-chip memory access caused by
large grouped point features, block-wise MLP fusion (BMF) is
proposed in this work. In BMF, multiple MLPs extract the
grouped input point feature block on chip, as shown in Fig. 5c.
In detail, the filters are pre-stored on-chip. Then a grouped input
point feature block is generated by grouping the input point

features of the current stage. The nth grouped output point
feature block is generated by convolving the nth grouped input
point feature block with the filters of the first MLP. The nth

grouped output point feature block is kept in the SRAM and is
the nth grouped input point feature block for the further
convolution of the subsequent MLP. Thus, consecutive
convolution of the nth grouped point feature block across
multiple MLPs is enabled without off-chip memory access of
intermediate grouped point feature blocks. Once the nth grouped
point feature block is processed by multiple MLPs of the
current stages, the (n+1)th grouped input point feature block
starts to be convolved with the filters of the first MLP.

As shown in Fig. 5b, in hardware implementation, the filters
of the MLPs (Filter0, Filter1, and Filter2) are cached in the
memory module in advance via an instruction transferred by the
off-chip host. A grouped input point feature block (IFMB0) and
the filters of the first MLP (Filter0) are convolved in the
convolution module to compute the output point feature block,
which is then written back to the memory module. The grouped
output point feature block is the grouped input point feature
block (IFMB1) of the second MLP. Therefore, a feature block
dataflow loop is built between the memory module and the
convolution module, enabling the on-chip reuse of feature
blocks across MLPs.

Two characteristics of point-based PNNs are exploited to
enable the proposed BMF. Firstly, the structure of consecutive
multiple MLPs in point-based PNNs enables the reuse of
features across multiple MLPs. Secondly, the 1×1 kernel size
of MLPs enables direct partitioning of the input point feature
without complex padding processing. Meanwhile, EFP enables
not only the filters in the shallow stages, but also the filters in
the deep stages to be completely stored on-chip. Therefore, the
feature blocks can be consecutively convolved on chip across
multiple MLPs.

The effectiveness of BMF in reducing off-chip memory
access is attributed to three aspects. Firstly, EFP reduces the
size of filters, enables the filters to be completely stored on-chip,
and thus extends the application of BMF from shallow stages to
deep stages of point-based PNNs. Secondly, EFP significantly
reduces the size of the input point features of each stage, thus
enabling the input point features of each stage to be completely
stored on-chip and eliminating the off-chip memory access.
Thirdly, the grouped point features among MLPs are K× larger
than the input point features among stages. BMF eliminates the
off-chip memory access of the large grouped point features. The
effectiveness of BMF is higher when there are more MLP layers
and the grouped point features are larger. Overall, BMF enables
the features to be reused on-chip and eliminates the off-chip
memory access of the intermediate features, as shown in Fig.
5e. A 21.1× off-chip memory access reduction is achieved for
PointNeXt-S with BMF. Benefiting from the dynamic
allocation of the memory module for different sizes of filters
and feature blocks across multiple MLP layers, and due to the
absence of complex control logic and storage overhead caused
by padding-free feature blocks, BMF incurs minimal hardware
overhead. Meanwhile, the configurable convolution module
supports different sizes of filters and feature blocks. After EFP,
the weights of all MLP layers are light and can be cached in the
memory module in advance to meet the bandwidth
requirements for the convolution module. Grouping features,
convolution, and pooling are therefore parallelized. Therefore,

M
em

or
y

C
on

tr
ol

le
r

IFM

OFM

Filter

M
LP

0

SRAM[1]

SRAM[2]

SRAM[3]

M
LP

1

IFMB0

IFMB1

IFMB2

Filter0

Filter1

PE PE PE

PE PE PE

Convolution Module

Core #0-3

PE PE PE

…

SRAM[0]

Filter2

Memory ModuleTi
m

e

SRAM[0]

SRAM[0]

F4
p3

F2
p3

F3
p3

F4
p3

F0
p3

F7
p3F7

p2

F3
p2

F2
p2

F4
p2

F0
p2

F15
p2

F0
F7 F2

F3

F4F5

F6

F8

F1

F9

F10

F11
F12

F13

F14

F15

M A F0

F7
F2

F3

F4F5

F6
F15

Time

F8

F1

F9

F10

F11
F12

F13

F14

A

Feature Block 1

···Last Stage
Features

F5
p0

F3
p0

F0
p0

F4
p0

F2
p0

F7
p0

F4
p9

F8
p9

F9
p9

F4
p9

F1
p9

F15
p9F13

p8

F9
p8

F8
p8

F12
p8

F1
p8

F14
p8F11

p1

F9
p1

F1
p1

F10
p1

F8
p1

F13
p1

R4
p3

R2
p3

R3
p3

R4
p3

R0
p3

R7
p3R7

p2

R3
p2

R2
p2

R4
p2

R0
p2

R15
p2R5

p0

R3
p0

R0
p0

R4
p0

R2
p0

R7
p0

R4
p9

R8
p9

R9
p9

R4
p9

R1
p9

R15
p9R13

p8

R9
p8

R8
p8

R12
p8

R1
p8

R14
p8R11

p1

R9
p1

R1
p1

R10
p1

R8
p1

R13
p1

M

Features are Dilated
by K× (e.g. 32)

Features are Reduced
by K×

Multiple MLPs
with 1×1 Kernel

G

Next Stage
Features

Feature Block 2

Features
94.5%

Filters
3.7%

Coordinates
1.8%

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 15,2023 at 08:24:11 UTC from IEEE Xplore. Restrictions apply.

the hardware utilization of accelerator is highly increased by
BMF.

C. Dual-Stream Block-wise FPS (DSBF)
Point-based PNNs typically employ the Farthest Point

Sampling (FPS) algorithm for down-sampling to reduce the
input point cloud size and enhance the representational
capability by preserving contour points. As shown in Fig. 1a, in
the original FPS, the computation of the next sampled point
depends on the result of the current sampled points. Therefore,
the original FPS processing is inherently sequential with a
latency of O(N2) cycles and a high computational complexity
of O(N2), where N represents the number of input points. The
sequential operations make FPS a latency bottleneck in
hardware implementation. For example, in the first layer of
PointNeXt-S, where FPS consists of 1024 input points and
needs to sample 512 points, the processing time of FPS is
approximately 80× longer than the computation time of the
systolic array. As shown in Fig. 6a, after EFP and BMF are
applied, sampling (FPS) accounts for 88.8% latency of
processing PointNeXt-S. Therefore, a method for FPS that
supports parallel computing with low computational
complexity and low latency is desirable.

A block-wise FPS algorithm is proposed in PNNPU [19] for
reducing the latency of sampling. The block-wise FPS
algorithm consists of two steps: predicting and block-wise FPS.
Both steps employ two key parameters, which are sparsity
coefficient S and the number of blocks B [19]. Larger values of
S and B can further reduce the computational complexity, at the
expense of severer degradation of network accuracy, as
demonstrated in Fig. 6b. In the first step, a large sparsity
coefficient S results in the loss of critical contour points with
strong representational ability, leading to decreased accuracy in
predicted numbers. In the second step, a larger block number B
leads to fewer points per block. The error caused by a larger
predicted number than the number of actual points significantly
increases.

To enhance the accuracy while ensuring low computational
complexity, a dual-stream block-wise FPS (DSBF) algorithm is
proposed in this work, which also has two steps. In the first step,
called dual-stream prediction, two distinct sparsity strategies
are adopted to reduce the original input points into two small
sparse point sets. Then, FPS is performed on each set.
Afterwards, the remained points are partitioned into B/2 cubes.
The points are counted for each cube. The counted numbers are
multiplied by S/2 and then accumulated to obtain the final
predicted number for each cube. Therefore, the predicted
numbers are more accurate than PNNPU. In the second step,
called dual-stream partition, the input point cloud is partitioned
into B/2 cubes. Then, each cube is evenly sampled into two
blocks to obtain total B blocks. Based on half of the predicted
number in each cube from the first step, these blocks are
performed FPS separately. Finally, all remained points in each
block are aggregated to obtain the final output points.

An example of applying DSBF to a point cloud with 1024
points is shown in Fig. 6c. The sparsity factor S is set to 16. The
points are divided into 16 blocks (B = 16). In the dual-stream
prediction, two sets with 64 sparse points are obtained based on
two sparse strategies (S0 and S1). After performing FPS and
cube-wise counting on the remained points in each set, the
numbers of remained points in the two sets are obtained. These

two numbers are multiplied by 8 (S/2) and accumulated to
obtain the final predicted number of the point cloud. The figure
only shows the point distribution for the front 4 cubes, where
the predicted numbers are 88, 56, 32, and 80, respectively. In
the dual-stream partition, the original point cloud is first divided
into 8 cubes. Taking the gray cube with 128 points as an
example. The gray cube is further divided into two blocks by
evenly sampling, each containing 64 points. Then the two
blocks are performed FPS separately to obtain two output
blocks, each of which contains 28 points. 28 is half of the
predicted number 56 from the dual-stream prediction. Then, the
two blocks are aggregated to obtain the final output cube with
56 remained points. Dual-stream partition can be performed in
parallel in all 8 cubes for sampling all the output points.

(a) (b)

(c)

(d)

Fig. 6. Dual-stream block-wise FPS (DSBF). (a) Sampling dominates the
overall latency after both EFP and BMF are applied. (b) Normalized
computational complexity and accuracy of the original FPS, PNNPU, and the
proposed DSBF. (c) The mechanism of DSBF. The ‘→’ represents the dual-
stream prediction data flow. The ‘→’ represents the dual-stream partition data
flow. Black numbers represent points, while red numbers show the number of
points used for prediction. (d) The number of samples in each block.

A comparison of the predicted number of samples in each
block of a point cloud among the original FPS (Truth Value),
PNNPU, and the proposed DSBF is shown in Fig. 6d. The
distribution of the proposed DSBF is similar to that of the
original FPS. Alternatively, PNNPU shows significant errors
compared to the original FPS. To evaluate the accuracy of
different techniques quantitatively, the mean absolute error
(MAE) is employed as a performance metric, using the original
FPS as a reference. Our method achieves 2.59× reduction in

Pooling
4.3%

Convolution
6.2%

Grouping
0.7%

Sampling
88.8%

Sp
ar

se
n

(1
/1

6) S0

FP
S,

 C
ub

e
C

ou
nt

S1

1024

64

64
3 4
5 4

1 6
6 3

x8

x8 Ag
gr

eg
at

e

32 80

88 56 Bl
oc

k
FP

S

40 144

204 128 64

64

Sp
ar

se
n

Partition into 8 Cubes

28

28 Ag
gr

eg
at

e

32 80

88 56

x 8 Cubes

Input Points Sparsed Point
per Set Sampled Numbers Predicted Numbers

per Cube
Block
Points

Sampled
Points

Output Points

Dual-Stream PartitionDual-Stream Prediction

Set0

Set1

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 15,2023 at 08:24:11 UTC from IEEE Xplore. Restrictions apply.

MAE compared to PNNPU. The normalized computational
complexity and the accuracy of PointNeXt-S with the original
FPS, PNNPU, and the proposed DSBF are shown in Fig. 6b.
The example is with 1024 input points, 512 output points, and
16 or 32 blocks. In the case of 16 (32) blocks, the DSBF
achieves a network overall accuracy (OA) of 91.21% (89.99%)
and mean accuracy (mAcc) of 87.36% (85.02%), with 1.91%
(3.69%) OA and 4.46% (7.51%) mAcc improvement,
compared to PNNPU, and 0.24% (1.46%) OA and 0.07%
(2.41%) mAcc loss, compared to the original FPS. Compared
to the original FPS and PNNPU, the proposed DSBF saves
14.22× (30.1×) computational complexity and introduces only
5.8% (3.1%) computational complexity overhead, respectively.
Therefore, the proposed DSBF significantly reduces the
computational complexity while maintaining relatively high
network accuracy.

V. EXPERIMENTAL RESULTS

In this section, the simulation results of the proposed PNN
accelerator are presented. The performance of the proposed
accelerator is also compared with the state of the art.

A. Experiment Setup
The proposed accelerator is implemented in the TSMC 28-

nm high-performance computing CMOS technology. Three
types of standard cells (standard threshold voltage (SVT), high
threshold voltage (HVT), and ultra-high threshold voltage
(UHVT)) are used in the proposed accelerator. Cadence Genus
is used for logic synthesis at 100 MHz and 0.9 V supply voltage.
To evaluate the power consumption, Cadence NC-Sim is used
to obtain the realistic switching activity of the hardware, in the
form of TCF (toggle count format) files. The TCF files are then
used for power evaluation with Cadence Genus. The
PointNeXt-S network is trained in PyTorch and run as the
benchmark on the proposed accelerator for evaluation.
ModelNet40 is used as the evaluation dataset. The open-source
tool Distiller is used for pruning, quantization to 8-bit data
width, and retraining PointNeXt to recover the accuracy.

B. Performance Evaluation
The area and power breakdown of the proposed accelerator

are shown in Fig. 7. The proposed accelerator can be configured
to disable the three proposed techniques (EFP, BMF, and DSBF)
to become a baseline version to evaluate the effectiveness of
those techniques in detail. The improvement in speed and
energy efficiency by using the three proposed techniques in
PointNeXt-S at 0.9 V and 100 MHz is shown in Fig. 8.

As shown in Fig. 8, with the proposed EFP alone, the
speedup and the effective energy efficiency improvement of the
PNN accelerator are 1.07× and 5.51×, respectively, for
PointNeXt-S, compared to the baseline. Note that the
bottleneck of speed, when using EFP alone, is the FPS because
the original FPS processing is inherently sequential with a
latency of O(N2) cycles and a high computational complexity
of O(N2). Therefore, DSBF is then used together with EFP.
Compared to using EFP alone, the speed of the accelerator is
boosted by 7.97×, meaning that the FPS algorithm is well
accelerated in parallel by DSBF. Compared to the baseline, the
energy efficiency of the accelerator is enhanced by 12.52×, by
using EFP and DSBF together.

When using EFP and DSBF together, the bottleneck of
speed is the large off-chip memory access of features. Thus,
BMF is also applied to reuse features on-chip among MLPs
afterwards, which achieves 21.1× reduction of total off-chip
memory access. By combining EFP, DSBF, and BMF together,
the speed and energy efficiency are enhanced by 1.8× and 1.1×
respectively, compared to only using EFP and DSBF.
Furthermore, by combining EFP, DSBF, and BMF together, the
speed and energy efficiency are improved by 15.32× and 13.6×
compared to the baseline. The accelerator takes only 0.53 ms
and 0.13 mJ to process PointNeXt-S at 100 MHz with 0.9 V
supply voltage.

(a) (b)
Fig. 7. (a) Area and (b) Energy breakdown of the proposed accelerator.

Fig. 8. The speedup and normalized effective energy efficiency by using the
proposed techniques in PointNeXt-S.

Fig. 9. The speedup and effective energy efficiency improvement of each
stage in PointNeXt-S.

The speedup and effective energy efficiency of each stage
in PointNeXt-S are demonstrated in Fig. 9. The speedup and
energy efficiency exhibit significant variations across different
stages. The latency of the first FPS in Stage1 dominates the
overall latency of inference in the baseline, accounting for
93.4%. DSBF shortens the latency of Stage1 by 8.2×.
Meanwhile, the latency and energy efficiency of all the stages
are improved by EFP, especially in the deep stages, such as
Stage4 and Stage5, where the channel sparsity of filters and
features in these deep stages is largely improved, as mentioned
in Section IV-A. Furthermore, BMF can eliminate the off-chip
memory access of the large grouped intermediate features
between MLPs in the shallow stages, as mentioned in Section
IV-B. The application of BMF is further extended from shallow
stages to deep stages of PNNs.

Convolution
27.7%

Pooling
1.8%

Memory
58.6%

Other
0.5%

Sampling
11.2%

Grouping
0.2%

Convolution
62.5%

Pooling
0.8%

Memory
32.0%Other

1.2%

Sampling
3.4%

Grouping
0.1%

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 15,2023 at 08:24:11 UTC from IEEE Xplore. Restrictions apply.

C. Comparisons with the State of the Art
The comparisons of the proposed point cloud accelerator

with the state-of-the-art point cloud accelerators are detailed in
Table I. As shown in Fig. 10, while running PointNeXt-S, the
proposed accelerator improves the effective energy efficiency
by 66.6×, 11.5×, 14.7×, 3.4×, 2.2×, 8.4×, and 3.1×, compared
with Mesorasi [17], PointAcc [21], Point-X [16], Crescent [18],
PNNPU [19], [14], and [15], respectively. The proposed
accelerator reduces the per-frame energy consumption by 70.2×,
12.1×, 2×, 3.6×, 11.6×, 45.4×, and 15×, compared with
Mesorasi [17], PointAcc [21], Point-X [16], Crescent [18],
PNNPU [19], [14], and [15], respectively. Meanwhile, to
evaluate the performance in terms of per-area and per-energy-
consumption, an overall efficiency (Frame/mm2/mJ) is
compared. The proposed accelerator improves the overall
efficiency by 74.9×, 32.3×, 9.1×, 3.9×, 126.8×, 127.5×, and 27×,
compared with Mesorasi [17], PointAcc [21], Point-X [16],
Crescent [18], PNNPU [19], [14], and [15], respectively.

Fig. 10. The effective energy efficiency improvement, per-frame energy
consumption reduction, and overall efficiency improvement, compared to the
state-of-the-art works.

VI. CONCLUSIONS

In this paper, an energy-efficient real-time point cloud
neural network accelerator is proposed. To reduce the high
energy consumption and long latency caused by convolution,
an efficient filter pruning is proposed. The redundant
convolution of pruned filters and zero-value feature channels is
skipped, while a large amount of inefficient off-chip memory
access of grouping point features is eliminated. A block-wise
multi-layer perceptrons (MLP) fusion is proposed to increase
the on-chip reuse of features and significantly reduce off-chip
memory access of point features in MLPs. Then, to eliminate
the latency bottleneck of sampling, a dual-stream blocking
method is proposed to enhance the parallelism of sampling
while maintaining the inference accuracy. All the proposed
techniques are enabled on the system architecture with
specialized computation flow. The proposed point cloud neural
network accelerator is implemented in the TSMC 28-nm
CMOS technology. Benchmarked with the PointNeXt-S
network classifying the ModelNet40 dataset, the proposed
accelerator achieves an effective energy efficiency of 12.65
TOPS/W and a per-frame energy consumption of 0.13
mJ/frame, with all the optimization techniques while running at
100 MHz with 0.9 V supply voltage and 8-bit data width.
Compared to the state-of-the-art point cloud neural network
accelerators, the proposed accelerator enhances the energy
efficiency and the per-frame energy consumption by up to
66.6× and 70.2×, respectively, thereby providing an attractive
option for edge computing.

ACKNOWLEDGEMENT

This work was supported in part by the National Natural
Science Foundation of China 62074005 and Shenzhen
Municipal Scientific Program JCYJ20200109140601691.

TABLE I
COMPARISONS WITH THE STATE OF THE ART

Mesorasi [17]
MICRO 2020

PointAcc [21]
MICRO 2021

Point-X [16]
MICRO 2021

Crescent [18]
ISCA 2022

PNNPU [19]
VLSI 2021

[14]
VLSI 2022

[15]
ISSCC 2023 This work

Technology TSMC 16 nm TSMC 40 nm 28 nm TSMC 16 nm 65 nm 65 nm 28 nm TSMC 28 nm

Area [mm2] 1.55 3.9 6.8 1.55 16 4.1 2.69 1.46

SRAM [KB] 1624 274 545.4 1622.8 364 108.5 176 128

MAC 256 256 2048 256 4608 100 256 1024

Frequency [MHz] 1024 1024 1024 1024 50-200 50-300 40-450 100

Data Type 16b A: 16b, W: 8b A: 16b, W: 16b/8b 16b 8b 8b 8b 8b

Network Type PointNet++ PointNet++ DGCNN, PointNet PointNet++ VoteNet MinkowskiNet SECOND PointNeXt-S

Effective Performance
[GOPS] 467 1168.16 1888.92 @ DGCNN 1791.02 @

PointNet++

614.4 @ 200
MHz,

153.6 @ 50 MHz

62 @ 300 MHz,
10.3 @ 50 MHz

193.8 @ 400
MHz 3003

Power Consumption
[mW] 2452.42 1057.08 2200 @ DGCNN 487.24 @

PointNet++
237 @ 200 MHz,
27.2 @ 50 MHz

80 @ 300 MHz,
6.9 @ 50 MHz

6.6 @ 60 MHz,
125 @ 400 MHz, 237.4

Effective Area
Efficiency [GOPS/mm2] 301.46 299.53 277.78 @ DGCNN 1155.5 @

PointNet++
0.55 @ 200 MHz,
0.14 @ 50 MHz

15.1 @ 300MHz,
2.5 @ 50 MHz 72 @ 400 MHz 2056.9

Effective Energy
Efficiency [TOPS/W] 0.19 1.1 0.8586 @ DGCNN 3.68 @

PointNet++
2.59 @ 200 MHz,
5.65 @ 50 MHz

0.78 @ 300 MHz
1.5 @ 50 MHz

1.55 @ 400 MH,
4.14 @ 60 MHz 12.65

Energy Consumption
[mJ/Frame] 8.92 1.54 1.6 @ DGCNN,

0.25 @ PointNet
0.46 @

PointNet++
3.2 @ 200 MHz,
1.47 @ 50 MHz

11.1 @ 300 MHz,
5.77 @ 50 MHz

5.0 @ 400 MHz,
1.9 @ 60 MHz 0.13

Frame Rate [Frame/s] 274.9 687.2 1307.1 @ DGCNN,
10000 @ PointNet

1053.4 @
PointNet++

84.4 @ 200 MHz,
21.1 @ 50 MHz

7.2 @ 300 MHz,
1.2 @ 50 MHz

16.9 @ 400 MHz,
3.3 @ 60 MHz 1873

Overall Efficiency
[Frame/mm2/mJ] 0.072 0.167 0.09 @ DGCNN,

0.59 @ PointNet
1.4 @

PointNet++
0.02 @ 200 MHz,
0.04 @ 50MHz

0.02 @ 300 MHz,
0.04 @ 50 MHz

0.07 @ 400 MHz,
0.20 @ 60 MHz 5.39

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 15,2023 at 08:24:11 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. Graham, M. Engelcke, and L. V. D. Maaten, “3D semantic
segmentation with submanifold sparse convolutional networks,” in Proc.
of IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Jun. 2018, pp. 9224-9232.

[2] C. Choy, J. Y. Gwak, and S. Savarese, “4D spatio-temporal convnets:
Minkowski convolutional neural networks,” in Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Jun. 2019, pp.
3070-3079.

[3] J. Komorowski, “MinkLoc3D: Point cloud based large-scale place
recognition,” in Proc. of the IEEE/CVF Winter Conference on
Applications of Computer Vision, Jan. 2021, pp. 1790-1799.

[4] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph CNN for learning on point clouds,” ACM
Transactions on Graphics, vol. 38, no. 5, pp. 1-12, Oct. 2019.

[5] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Jun. 2017, pp.
29-38.

[6] C. Wang, B. Samari, and K. Siddiqi, “Local spectral graph convolution
for point set feature learning,” in Proc. of the Springer European
Conference on Computer Vision, Sept. 2018, pp. 56-71.

[7] J. Liu, B. Ni, C. Li, J. Yang, and Q. Tian, “Dynamic points agglomeration
for hierarchical point sets learning,” in Proc, of the IEEE/CVF
International Conference on Computer Vision, Oct. 2019, pp. 7545-7554.

[8] Q. Xu, X. Sun, C.-Y. Wu, P. Wang, and U. Neumann, “Grid-GCN for
fast and scalable point cloud learning,” in Proc. of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Jun. 2020, pp.
5661-5670

[9] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on
point sets for 3D classification and segmentation,” in Proc. the IEEE
Conference on Computer Vision and Pattern Recognition, Jun. 2017, pp.
77-85.

[10] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proc. of the
International Conference on Neural Information Processing Systems,
2017, pp. 5105-5114.

[11] X. Ma, C. Qin, H. You, H. Ran, and Y. Fu, “Rethinking network design
and local geometry in point cloud: A simple residual MLP framework,”
in Proc. of the International Conference on Learning Representations,
Apr. 2022.

[12] G. Qian, Y. Li, H. Peng, J. Mai, H. A. A. K. Hammoud, M. Elhoseiny,
and B. Ghanem, “PointNeXt: Revisiting PointNet++ with improved
training and scaling strategies,” in Proc. of the International Conference
on Neural Information Processing Systems, Nov. 2022, pp. 23192-23204.

[13] H. Zhao, L. Jiang, C. W. Fu, and J. Jia, “Pointweb: Enhancing local
neighborhood features for point cloud processing,” in Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Jun. 2019, pp. 5565-5573.

[14] Q. Cao and J. Gu, “A sparse convolution neural network accelerator for
3D/4D point-cloud image recognition on low power mobile device with
hopping-index rule book for efficient coordinate management,” in IEEE
Symposium on VLSI Technology and Circuits (VLSI) Dig. Tech. Papers,
Jun. 2022, pp. 106-107.

[15] W. Sun, X. Feng, C. Tang, S. Fan, Y. Yang, J. Yue, H. Yang, and Y. Liu,
“A 28nm 2D/3D unified sparse convolution accelerator with block-wise
neighbor searcher for large-scaled voxel-based point cloud network,” in
IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech.
Papers, Feb. 2023, pp. 328-310.

[16] J.-F. Zhang and Z. Zhang, “Point-X: A spatial-locality-aware
architecture for energy-efficient graph-based point-cloud deep learning,”
in Proc. of the IEEE/ACM International Symposium on
Microarchitecture, Oct. 2021, pp. 1078-1090.

[17] Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu, “Mesorasi:
Architecture support for point cloud analytics via delayed-aggregation,”
in Proc. of the IEEE/ACM International Symposium on
Microarchitecture, Oct. 2020, pp. 1037-1050.

[18] Y. Feng, G. Hammonds, Y. Gan, and Y. Zhu, “Crescent: Taming
memory irregularities for accelerating deep point cloud analytics,” in

Proc. of the ACM/IEEE Annual International Symposium on Computer
Architecture, Jun. 2022, pp. 962-977.

[19] S. Kim, J. Lee, D. Im and H. -J. Yoo, “PNNPU: A 11.9 TOPS/W high-
speed 3D point cloud-based neural network processor with block-based
point processing for regular DRAM access,” in Proc. of Symposium on
VLSI Circuits, Jun. 2021, pp. 1-2.

[20] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting for 3d
object detection in point clouds.,” in Proc, of the IEEE/CVF
International Conference on Computer Vision, Oct. 2019, pp. 9277-9286.

[21] Y. Lin, Z. Zhang, H. Tang, H. Wang, and S. Han, “PointAcc: Efficient
point cloud accelerator,” in Proc. of the IEEE/ACM International
Symposium on Microarchitecture, Oct. 2021, pp. 449-461.

[22] Distiller. Accessed: Apr. 12, 2022. [Online]. Available:
https://github.com/IntelLabs/distiller.

[23] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Jun. 2015, pp. 1912-1920.

[24] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, S. Zheng, T. Lu, J. Gu, L. Liu,
and S. Wei, “A high energy efficient reconfigurable hybrid neural
network processor for deep learning applications,” IEEE Journal of
Solid-State Circuits, vol. 53, no. 4, pp. 968-982, Apr. 2018.

[25] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B.
Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
accelerator for compressed-sparse convolutional neural networks,” in
Proc. of the ACM/IEEE Annual International Symposium on Computer
Architecture, Jun. 2017, pp. 27-40.

[26] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. of the International Conference
on Learning Representations, May 2015.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 15,2023 at 08:24:11 UTC from IEEE Xplore. Restrictions apply.

