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Abstract—Three-dimensional (3D) point cloud has been 
employed in a wide range of applications recently. As a powerful 
weapon for point cloud analysis, point-based point cloud neural 
networks (PNNs) have demonstrated superior performance with 
less computation complexity and parameters, compared to sparse 
3D convolution-based networks and graph-based convolutional 
neural networks. However, point-based PNNs still suffer from 
high computational redundancy, large off-chip memory access, 
and low parallelism in hardware implementation, thereby 
hindering the applications on edge devices. In this paper, to 
address these challenges, an energy-efficient 3D point cloud 
neural network accelerator is proposed for on-chip edge 
computing. An efficient filter pruning scheme is used to skip the 
redundant convolution of pruned filters and zero-value feature 
channels. A block-wise multi-layer perceptron (MLP) fusion 
method is proposed to increase the on-chip reuse of features, 
thereby reducing off-chip memory access. A dual-stream 
blocking technique is proposed for higher parallelism while 
maintaining inference accuracy. Implemented in an industrial 28-
nm CMOS technology, the proposed accelerator achieves an 
effective energy efficiency of 12.65 TOPS/W and 0.13 mJ/frame 
energy consumption for PointNeXt-S at 100 MHz, 0.9 V supply 
voltage, and 8-bit data width. Compared to the state-of-the-art 
point cloud neural network accelerators, the proposed 
accelerator enhances the energy efficiency by up to 66.6× and 
reduces the energy consumption per frame by up to 70.2×.

Keywords—Three-dimensional point cloud, off-chip memory 
access, data reuse, high parallelism, speedup, energy efficiency.

I. INTRODUCTION

In recent years, point cloud is increasingly used in various 
applications, such as cars, robots, drones, and depth cameras in 
smartphones. Point cloud demonstrates significant advantages 
such as easy acquisition, high resolution, and efficient data 
format. Therefore, point cloud has become an important 
modality as important as images and videos for deep learning 
applications such as autonomous driving, photography, virtual 
reality (VR), and augmented reality (AR). Deep neural 
networks (DNNs) have been utilized for point cloud analysis.
The mainstream point cloud neural networks (PNNs) can be 
grouped into three categories: sparse 3D convolution-based 
networks [1], [2], [3], graph-based convolutional neural 
networks [4], [5], [6], [7], [8], and point-based PNNs [9], [10], 
[11], [12], [13]. In particular, point-based PNNs, a class of 
neural networks developed from PointNet [9], perform 
outstandingly in point cloud analysis. The point-based PNNs
can directly process points to extract features and solve the 
issues of disordered and discrete data. Furthermore, the 
mapping operations (including sampling and grouping) in 
point-based PNNs enable the networks to have multi-level and 
strong feature extraction capability, thereby achieving high 

inference accuracy and robustness. The use of shared-weight 
MLP and pooling in point-based PNNs makes the models
compact with light computation. 

When deploying PNNs on edge devices, such as wearable, 
mobile, and Internet-of-Things (IoT) devices, which require
real-time interactions with humans and instantaneous 
perception and comprehension of the environment, both high
inference accuracy and minimal latency/energy consumption 
are crucial. However, the grouping operations in point-based 
PNNs, such as k-nearest neighbors (KNN) and ball query (BQ), 
lead to irregular indexing patterns. These irregular patterns 
degrade the off-chip memory access bandwidth efficiency
significantly. The limited data reuse in the MLP layers of PNNs 
also results in substantial off-chip memory access, which is 
exacerbated by the large amount of computation and parameters
in PNNs. Furthermore, the commonly used farthest point 
sampling (FPS) algorithm is inherently sequential and becomes
a latency bottleneck in PNN accelerators. Therefore, there is an 
urgent need to design a point cloud neural network accelerator 
that minimizes off-chip memory access and enhances
computation parallelism of the sampling operations, while 
reducing the amount of computations.

On-chip PNN accelerators have been investigated 
sporadically in recent years. For sparse 3D convolution-based 
PNNs, in [14], a customized skipping index rule table and an 
efficient search method are proposed for accelerating 
MinkowskiNet [2] to reduce the hardware overhead for storage 
management. However, [14] suffers from high energy 
consumption caused by enormous computation and movement
of index. In [15], an accelerator for SECOND network [1] is 
proposed. The coordinate (COO) and feature map are block-
partitioned according to the COO, eliminating the overhead of 
off-chip gathering and scattering, and enabling efficient 
continuous block-level off-chip memory access. However, [15]
suffers from significant repetitive off-chip memory access and 
on-chip computation for the boundary voxels between blocks.

For graph-based PNNs, Point-X [16] extracts and exploits 
the spatial locality in point cloud data for efficient processing
DGCNN [4]. Point-X clusters the point cloud and assigns each 
cluster to a compute tile to maximize intra-tile computational 
parallelism and minimize inter-tile data movement. However, 
Point-X is highly customized for DGCNN and lacks the
generality for other PNNs.

For point-based PNNs, a delayed-aggregation method is 
proposed in Mesorasi [17] to increase the reuse of point features. 
Delayed-aggregation moves aggregation from before multiple 
MLPs to after multiple MLPs in point-based PNNs. However, 
the delayed-aggregation method reverses the computation order 
of centralization and activation of features, resulting in unstable 
inference accuracy and up to 0.9% accuracy loss. Furthermore, 
the number of the output feature map channels often doubles
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compared to that of input feature maps per MLP, making the 
delayed aggregation a new latency bottleneck beyond MLPs.
Evolved from Mesorasi, Crescent [18] focuses on eliminating 
the irregular memory access of features and coordinates. An 
approximate neighbor search method is proposed to reduce the 
data movement by locally searching neighbor points with 
Crescent. Meanwhile, the access conflicts of memory banks are 
selectively eliminated by copying the access data to 
accommodate multiple port requests. However, up to 1%
accuracy loss is caused by the two approximation techniques. 
In [19], PNNPU is proposed to accelerate VoteNet [20]. Point 
cloud is mapped and convolved in blocks to reduce the 
complexity of mapping operations and eliminate the irregular 
off-chip memory access of MLPs. However, the proposed 
blocking method suffers from a significant accuracy loss in 
small-scale scenarios (e.g., 1k input points). Furthermore, the 
large number of computations and off-chip memory access 
involved in the convolutions of PNNPU still remain as great 
challenges. A configurable PNN accelerator, PointAcc, is 
proposed in [21] to support multiple types of PNNs. However,
the off-chip memory access of coordinates and features is large, 
while the reuse rate of the mapping hardware is low due to the 
configurability of the accelerator.

To address the existing challenges, including large 
computational complexity, off-chip memory access, accuracy 
loss, and low parallelism, an energy-efficient and low-latency 
PNN accelerator is proposed for real-time 3D point cloud 
inference on edge devices. This accelerator supports the 
mainstream point-based PNNs, e.g. PointNet [9], PointNet++ 
[10], PointMLP [11], and PointNeXt [12]. An efficient filter 
pruning is applied to skip the redundant convolution of pruned 
filters and zero-value feature channels. Meanwhile, a large 
amount of inefficient off-chip memory access of grouping point 
features is eliminated. A block-wise multi-layer perceptron
(MLP) fusion method is proposed to improve the on-chip reuse 
of features and reduce off-chip memory access of point features 
in MLPs. To eliminate the latency bottleneck of sampling, a
dual-stream blocking technique is proposed for higher
parallelism of sampling while maintaining inference accuracy.
Specialized architecture and computation flow are proposed to
enhance the effectiveness of the proposed techniques. 
Implemented in the TSMC 28-nm CMOS technology, the 
proposed accelerator achieves a remarkable effective energy 
efficiency of 12.65 TOPS/W and 0.13 mJ/frame energy 
consumption for PointNeXt-S at 100 MHz, 0.9 V supply 
voltage, and 8-bit data width. Compared to the state-of-the-art 
PNN accelerators, the proposed accelerator enhances the 
energy efficiency by up to 66.6×, reduces the energy 
consumption by up to 70.2×, and improves the overall 
efficiency (Frame/mm2/mJ) by up to 127.5×.

The paper is organized as follows. The background of point-
based PNNs is introduced in Section II. The system architecture 
is portraited in Section III. The proposed techniques that enable 
low latency, high parallelism, and minimal off-chip memory 
access are presented in Section IV. The experimental results of 
the proposed PNN accelerator are discussed in Section V. The 
paper is concluded in Section VI.

II. BACKGROUND

In this section, the fundamental concepts of point cloud, 
mapping operation, and MLP are provided. The backbone of 

point-based PNNs and a classical point-based PNN,
PointNeXt-S, are introduced.

A. The Backbone of Point-based PNNs
The point cloud is a set of points x = {xk} = {(pk, fk)}, where 

pk = (xk, yk, zk) is the coordinate of the kth point, and fk is the 
corresponding 1-D feature vector. As shown in Fig. 1c, the 
backbone of point-based point cloud neural network 
architecture is composed of multiple stages. Each stage
contains a mapping layer, several consecutive MLPs, and a 
pooling layer. The mapping layer contains sampling and 
grouping operations and aims to build a relationship between 
the input and output points as a mapping. These operations 
usually only take point coordinates as input. Then, the 
corresponding features of input points are grouped according to 
the mapping. The convolutions in the MLPs are performed on 
all the feature groups. Then, max-pooling is performed on the 
output results of each group to obtain the corresponding output 
point feature.

Fig. 1. The backbone of point-based PNNs. (a) FPS operation process. (b) 
BQ operation process. (c) The backbone overview of point-based PNNs. (d) 
The change of points within a stage.

Sampling. Point-based PNNs typically employ the farthest 
point sampling (FPS) algorithm for the sampling process, 
where output points are iteratively sampled from the input point 
cloud. FPS starts by randomly selecting an initial point from the 
point cloud. In each iteration, the point that has the largest 
distance to the current output point cloud is added to the output 
point cloud. For example, in Fig. 1a, the first selected output 
point is assumed to be a. Since b has the largest distance from 
a, b is chosen as the second output point.

Grouping. After sampling, grouping refers to the process of 
finding the nearest neighbor points for each point of the output 
point cloud. Note that the coordinates of the input and output 
points remain unchanged, i.e., the coordinates of input point a
and output point a' are the same. Point-based PNNs typically 
employ KNN or BQ for the grouping process. In KNN, the top-
k nearest neighbor points are selected based on their distances 
to the output point. BQ further requires these neighbor points to 
lie within a sphere of radius R. As illustrated in Fig. 1b, K, the 
number of the required nearest neighbor input points for the
output point a', is three. Four input points a, c, d, and e are 
identified within the sphere centered at the output point a'. BQ 

Sa
m

pl
in

g

G
ro

up
in

g

M
LP ...

M
LP

N
Mapping MLPs Aggregation

M
ax

 P
oo

lin
g

Stage 1 Stage 2

a

b

e
d c

b
f

e
d c

f a
b

f

e
d c

a
b

f

e
d c

a a(a')

b

e
d c

f
b

e
d c

f

(c)

(a) (b)

p0

p7

p2

p3

p4p5

p6

p8

p1

p9

p10

p11p12

p13

S G

F0
p0

F2
p0

F3
p0

F4
p0

F5
p0

F7
p0

F8
p1

F9
p1

F10
p1

F11
p1

F12
p1

F1
p1

M

R2
p0

R3
p0

R4
p0

R5
p0

R0
p0

R7
p0

R8
p1

R9
p1

R10
p1

R11
p1

R12
p1

R1
p1

A
p14

p15

F'0

F'1

····

(d)

a(a')

K=3

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on December 15,2023 at 08:24:11 UTC from IEEE Xplore.  Restrictions apply. 



then selects the three nearest points a, d, and e. Then, points a, 
d, and e are considered as the group of the output point a'. The 
relationship between the output point a' and input points a, d,
and e is the mapping of output point a'. The corresponding 
features of points a, d, and e are also grouped and then passed 
to the following MLPs to generate the feature of output point a'.

MLPs. MLP is a kind of convolution layer with a kernel size 
of 1×1. In the MLPs of point-based PNNs, filters are shared 
across all input point features. The change of points within a 
stage is shown in Fig. 1d, where p represents the coordinates of 
input points, F represents the grouped features, and R
represents the partial sums after MLPs. MLPs are performed on 
the grouped input features to obtain partial sums. Multiple 
MLPs are stacked in each stage to further extract features.

Max-Pooling. In point-based PNNs, max-pooling is 
employed to aggregate the per-point partial sums obtained by 
MLPs from all neighbor points. For example, the channel-wise 
maximum values are computed among the partial sums R0, R2, 
R3, R4, R5, and R7 to obtain the output point feature F0', as 
shown in Fig. 1d.

B. The Network Architecture of PointNeXt-S
PointNeXt is a state-of-the-art and scalable point-based 

PNN for processing point cloud and significantly outperforms 
other PNNs. Optimized from the classical PointNet++ [10], 
PointNeXt-S, a small variant of PointNeXt, introduces residual 
architecture into PointNeXt and mainly consists of five stages, 
as shown in Fig. 2. PointNeXt-S outperforms PointNet++ while 
maintaining similar amount of model parameters and 
computational complexity.

Fig. 2. The network architecture of PointNeXt-S.

To train and compress neural networks, we use Distiller [22], 
an open-source Python package for neural network 
compression research that is developed by Intel. ModelNet40 
[23], a classical 3D point cloud dataset of 40 object classes and 
12311 samples, is typically applied for point cloud neural 
network evaluation. Therefore, ModelNet40 is used as the
benchmark for classification with PointNeXt-S. 

III. SYSTEM ARCHITECTURE OVERVIEW

The system architecture of the proposed point cloud 
accelerator is introduced in this section. To obtain high energy 
efficiency and low latency, the hardware architecture is 
optimized for high data reuse, high parallelism, redundant
operation skipping, as well as network configurability.

The hardware architecture of the proposed accelerator is 
shown in Fig. 3. The accelerator consists of a control module, a 
mapping module, a convolution module, a pooling module, a 
memory module, and an interface module. The mapping 
module includes a sampling submodule performing FPS and a 
grouping submodule performing KNN or BQ. The mapping 
module can be configured to support different numbers of input 
points and output points. The sampling submodule contains 16 

cores, while the grouping submodule contains 8 cores. The 
convolution module is composed of 4 cores, each of which is a 
systolic array of 16×16 processing elements (PEs). The pooling 
module contains 8 cores, each of which consists of 32 
comparators. The number of cores in each module is 
determined by the workload and latency requirements of each 
type of operations in point-based PNNs. The memory module 
is composed of 32 static random-access memory (SRAM) 
banks of 4KB. Due to the varied bandwidth and storage 
requirements of the mapping module, the convolution module, 
and the pooling module during the inference, the memory 
module can be dynamically allocated for these modules.

Fig. 3. The hardware architecture of the proposed point cloud neural network
accelerator.

An instruction set architecture (ISA) is designed for the off-
chip host to control the accelerator. During neural network 
inference, the off-chip host sends a set of instructions to the
control module. The control module decodes the instruction and 
then controls the execution of the mapping module, the 
convolution module, and the pooling module, as well as the 
allocation of the memory module. As mentioned in Section II-
A, the mapping module constructs the mappings between the 
input points and the output points. Then, the required input 
point features are grouped for each output point according to 
the built mappings. The multiple cores of the mapping module 
provide sufficient performance to meet the throughput of 
mappings required by the convolution module. The dataflow of 
the convolution module is output stationary (OS) dataflow [24]. 
The convolution module convolves the input feature groups 
with filters to obtain partial sum groups. The pooling module 
obtains the output point features by performing max-pooling on 
the partial sum groups. The proposed accelerator adopts a 
pipelined dataflow from overall architecture to 
microarchitecture for higher hardware utilization. The multi-
core schemes are employed for higher parallelism and 
bandwidth utilization.

IV. OPTIMIZATION TECHNIQUES

In this section, three techniques are proposed to enhance the 
energy efficiency and shorten the latency of the PNN 
accelerator. Firstly, to reduce the high energy consumption and
long latency caused by convolution, an efficient filter pruning 
is proposed. The redundant convolution of pruned filters and 
zero-value feature channels is skipped, while a large amount of
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inefficient off-chip memory access of grouping point features 
is eliminated. Secondly, a block-wise multi-layer perceptrons 
(MLP) fusion is proposed to increase the on-chip reuse of 
features and significantly reduce off-chip memory access of 
point features in MLPs. Thirdly, to eliminate the latency 
bottleneck of sampling, a dual-stream blocking method is 
proposed to enhance the parallelism of sampling while
maintaining the inference accuracy.

A. Efficient Filter Pruning (EFP)
Similar to 2D-CNN, the convolution operations, including 

MLPs and FCs, still dominate the computation and data storage 
of point-based PNNs, as shown in Fig. 4a and Fig. 4b. High
energy consumption and long latency are caused by the 
computation and off-chip memory access, respectively,
involved in convolutions. Meanwhile, the grouping operations, 
such as k-nearest neighbors (KNN) and ball query (BQ) in 
point-based PNNs, lead to irregular off-chip memory access of 
point features. Therefore, the off-chip memory access 
bandwidth efficiency of PNNs is significantly degraded. An 
efficient model compression method to accommodate more
point features on chip is desirable. Prior works [25] have shown 
that significant redundancy exists in 2D-CNN, so that a large 
number of weights and activations can be set to zero without 
accuracy loss, which is also verified in this work for point-based
PNNs. In a convolution layer, element sparsity is the ratio of 
zero-value elements in weights or activations, while channel 
sparsity is the ratio of zero-value channels in filters or input 
features. All elements are zero in a zero-value channel. 
Including these zeros increases data storage and wastes energy 
and computation time. Skipping these zeros in computation 
does not impact the network accuracy at all. Therefore, 
effectively skipping zero channels can significantly reduce the 
inference time and energy consumption of the accelerator.

After linear quantization to fixed-point 8-bit integers, the 
element sparsity of original weights and activations in 
PointNeXt-S is 2.07% and 41.75%, respectively. The element 
sparsity is low and unstructured, not friendly for hardware 
acceleration. An efficient and structured pruning method is 
desirable. Since the contribution of different filters to the 
network accuracy varies greatly, some less important filters can 
be directly pruned without accuracy loss. Meanwhile, note that 
in the MLPs of point-based PNNs, the filters are reused in only 
one dimension across input points, rather than in two 
dimensions such as 2D-CNN.  Therefore, in point-based PNNs, 
a greater number of filters can be pruned with minimal impact 
on the output features and inference results compared to 2D-
CNN. An efficient filter pruning (EFP) is proposed in this work. 
The overall pruning rate of filters is set to 78%. The pruning 
rate of each layer is determined based on the sensitivity analysis 
by Distiller. After filter pruning, the channel sparsity of features 
and filters for each layer is significantly improved, as shown in 
Fig. 4c. Since the batch normalization among MLPs is removed 
in PointNeXt-S, the pruned filters in the current layer can also 
introduce the corresponding zero-value channels of the input 
feature in the next layer, increasing the overall channel sparsity 
of features from 15.7% to 61.78%. Meanwhile, the convolution 
of the zero-value channels of input features and the 
corresponding channels of the filters in the next layer is
redundant. Consequently, these zero-value channels in the 
filters of the next layer can be further pruned, improving the 

overall channel sparsity of filters from 78% (the overall pruning 
rate of filters) to 96.6%. The OS dataflow of the convolution 
module provides strong support for structured pruning, 
resulting in minimal hardware overhead. After applying EFP in 
PointNeXt-S, the model parameters and computational
complexity are significantly reduced by 29.4× and 12.4×,
respectively, as shown in Fig. 4d. Furthermore, the input point 
features of each stage can be stored on-chip because the zero-
value channels of input point features introduced by EFP are 
not stored, thereby eliminating a large amount of inefficient off-
chip memory access of grouping point features and 
significantly shortening the latency.

(a)                                    (b)

(c)

(d)
Fig. 4. Efficient filter pruning (EFP) in PointNeXt-S. (a) Computation and 
(b) data storage breakdown of each type of operations in PointNeXt-S. (c) 
Channel sparsity of input features and filters after the original PointNeXt-S is
quantized to fixed-point 8-bit integers without pruning and after filters of the 
quantized PointNeXt-S are further pruned by 78%. (d) Reduction of model 
parameters and computational complexity after filters are pruned by 78%.

B. Block-wise MLP Fusion (BMF)
As shown in Fig. 1c, point-based PNNs are composed of 

multiple consecutive stages, each of which contains a series of 
MLPs. In terms of size, the filters are light in the shallow stages 
while heavy in the deep stages in the original point-based PNNs, 
such as PointNeXt-S, as shown in Fig. 5a. However, different 
from 2D-CNN, point-based PNNs contain grouping operations, 
as mentioned in Section II-A. As shown in Fig. 5c, the input 
point features of the current stage are grouped to generate the 
grouped input point features. Note that the size of the grouped 
point features is K× (e.g. 32× in PointNeXt-S) larger than the 
original input point features of the current stage. The grouped 
output point features are performed aggregation after the 
convolution of MLPs and thus reduced by K×. Namely, the 
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point features among MLPs are dilated by K×, compared to the 
point features among stages. Therefore, the size of features is
larger than the size of filters in most stages. For example, in the 
shallow stages of the original PointNeXt-S, the features 
dominate the storage, reaching 32× the size of the filters, and 
therefore cannot be completely stored on chip. After EFP, the 
features are even 51.4× larger than the filters in the pruned 
PointNeXt-S. 

  
(a)                                                           (b)

(c)

(d)                                                          (e)

Fig. 5. Block-wise MLP fusion (BMF). (a) The size of filters in each stage of 
the original PointNeXt-S. (b) The hardware implementation of BMF. (c) The 
data flow of block-wise and pipelined MLP fusion. (d) The breakdown of off-
chip memory access after EFP is applied. (e) The memory access reduction of 
each layer after BMF.

The on-chip reuse of point features in point-based PNNs is
also significantly reduced due to the 1×1 kernel size of MLPs, 
compared to 2D-CNNs. For example, the reuse of features in 
PointNeXt-S is reduced by ~9×, compared to VGG-16 [26]. In 
the conventional data flow, after the grouped input point 
features of the current MLP are convolved, the grouped input 
point features of the next MLP begin to be computed. Due to 
these two reasons, namely the larger feature size and the lower
on-chip reuse of features, the off-chip memory access of input 
and output features is significantly increased. As shown in Fig. 
5d and Fig. 5e, in the conventional dataflow, the off-chip 
memory access is large, while the features dominate the off-
chip memory access. Therefore, the limited interface bandwidth 
cannot meet the requirement of the convolution module and 
pooling module, causing low hardware utilization and long 
latency. 

To address the large off-chip memory access caused by 
large grouped point features, block-wise MLP fusion (BMF) is 
proposed in this work. In BMF, multiple MLPs extract the 
grouped input point feature block on chip, as shown in Fig. 5c. 
In detail, the filters are pre-stored on-chip. Then a grouped input 
point feature block is generated by grouping the input point 

features of the current stage. The nth grouped output point 
feature block is generated by convolving the nth grouped input 
point feature block with the filters of the first MLP. The nth

grouped output point feature block is kept in the SRAM and is
the nth grouped input point feature block for the further 
convolution of the subsequent MLP. Thus, consecutive
convolution of the nth grouped point feature block across 
multiple MLPs is enabled without off-chip memory access of 
intermediate grouped point feature blocks. Once the nth grouped 
point feature block is processed by multiple MLPs of the 
current stages, the (n+1)th grouped input point feature block 
starts to be convolved with the filters of the first MLP.

As shown in Fig. 5b, in hardware implementation, the filters 
of the MLPs (Filter0, Filter1, and Filter2) are cached in the 
memory module in advance via an instruction transferred by the
off-chip host. A grouped input point feature block (IFMB0) and 
the filters of the first MLP (Filter0) are convolved in the 
convolution module to compute the output point feature block, 
which is then written back to the memory module. The grouped 
output point feature block is the grouped input point feature 
block (IFMB1) of the second MLP. Therefore, a feature block 
dataflow loop is built between the memory module and the 
convolution module, enabling the on-chip reuse of feature 
blocks across MLPs.

Two characteristics of point-based PNNs are exploited to 
enable the proposed BMF. Firstly, the structure of consecutive
multiple MLPs in point-based PNNs enables the reuse of 
features across multiple MLPs. Secondly, the 1×1 kernel size 
of MLPs enables direct partitioning of the input point feature 
without complex padding processing. Meanwhile, EFP enables 
not only the filters in the shallow stages, but also the filters in 
the deep stages to be completely stored on-chip. Therefore, the 
feature blocks can be consecutively convolved on chip across
multiple MLPs.

The effectiveness of BMF in reducing off-chip memory 
access is attributed to three aspects. Firstly, EFP reduces the 
size of filters, enables the filters to be completely stored on-chip, 
and thus extends the application of BMF from shallow stages to 
deep stages of point-based PNNs. Secondly, EFP significantly 
reduces the size of the input point features of each stage, thus 
enabling the input point features of each stage to be completely
stored on-chip and eliminating the off-chip memory access. 
Thirdly, the grouped point features among MLPs are K× larger 
than the input point features among stages. BMF eliminates the 
off-chip memory access of the large grouped point features. The 
effectiveness of BMF is higher when there are more MLP layers 
and the grouped point features are larger. Overall, BMF enables
the features to be reused on-chip and eliminates the off-chip 
memory access of the intermediate features, as shown in Fig. 
5e. A 21.1× off-chip memory access reduction is achieved for 
PointNeXt-S with BMF. Benefiting from the dynamic
allocation of the memory module for different sizes of filters 
and feature blocks across multiple MLP layers, and due to the 
absence of complex control logic and storage overhead caused
by padding-free feature blocks, BMF incurs minimal hardware 
overhead. Meanwhile, the configurable convolution module 
supports different sizes of filters and feature blocks. After EFP, 
the weights of all MLP layers are light and can be cached in the
memory module in advance to meet the bandwidth 
requirements for the convolution module. Grouping features, 
convolution, and pooling are therefore parallelized. Therefore, 
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the hardware utilization of accelerator is highly increased by 
BMF.

C. Dual-Stream Block-wise FPS (DSBF)
Point-based PNNs typically employ the Farthest Point 

Sampling (FPS) algorithm for down-sampling to reduce the 
input point cloud size and enhance the representational 
capability by preserving contour points. As shown in Fig. 1a, in 
the original FPS, the computation of the next sampled point 
depends on the result of the current sampled points. Therefore, 
the original FPS processing is inherently sequential with a 
latency of O(N2) cycles and a high computational complexity 
of O(N2), where N represents the number of input points. The 
sequential operations make FPS a latency bottleneck in 
hardware implementation. For example, in the first layer of 
PointNeXt-S, where FPS consists of 1024 input points and 
needs to sample 512 points, the processing time of FPS is 
approximately 80× longer than the computation time of the 
systolic array. As shown in Fig. 6a, after EFP and BMF are 
applied, sampling (FPS) accounts for 88.8% latency of 
processing PointNeXt-S. Therefore, a method for FPS that 
supports parallel computing with low computational 
complexity and low latency is desirable.

A block-wise FPS algorithm is proposed in PNNPU [19] for 
reducing the latency of sampling. The block-wise FPS 
algorithm consists of two steps: predicting and block-wise FPS. 
Both steps employ two key parameters, which are sparsity 
coefficient S and the number of blocks B [19]. Larger values of
S and B can further reduce the computational complexity, at the 
expense of severer degradation of network accuracy, as 
demonstrated in Fig. 6b. In the first step, a large sparsity 
coefficient S results in the loss of critical contour points with 
strong representational ability, leading to decreased accuracy in 
predicted numbers. In the second step, a larger block number B
leads to fewer points per block. The error caused by a larger 
predicted number than the number of actual points significantly 
increases.

To enhance the accuracy while ensuring low computational 
complexity, a dual-stream block-wise FPS (DSBF) algorithm is 
proposed in this work, which also has two steps. In the first step, 
called dual-stream prediction, two distinct sparsity strategies 
are adopted to reduce the original input points into two small 
sparse point sets. Then, FPS is performed on each set. 
Afterwards, the remained points are partitioned into B/2 cubes. 
The points are counted for each cube. The counted numbers are 
multiplied by S/2 and then accumulated to obtain the final 
predicted number for each cube. Therefore, the predicted 
numbers are more accurate than PNNPU. In the second step, 
called dual-stream partition, the input point cloud is partitioned 
into B/2 cubes. Then, each cube is evenly sampled into two 
blocks to obtain total B blocks. Based on half of the predicted 
number in each cube from the first step, these blocks are 
performed FPS separately. Finally, all remained points in each 
block are aggregated to obtain the final output points.

An example of applying DSBF to a point cloud with 1024 
points is shown in Fig. 6c. The sparsity factor S is set to 16. The 
points are divided into 16 blocks (B = 16). In the dual-stream 
prediction, two sets with 64 sparse points are obtained based on 
two sparse strategies (S0 and S1). After performing FPS and 
cube-wise counting on the remained points in each set, the 
numbers of remained points in the two sets are obtained. These 

two numbers are multiplied by 8 (S/2) and accumulated to 
obtain the final predicted number of the point cloud. The figure 
only shows the point distribution for the front 4 cubes, where
the predicted numbers are 88, 56, 32, and 80, respectively. In 
the dual-stream partition, the original point cloud is first divided 
into 8 cubes. Taking the gray cube with 128 points as an 
example. The gray cube is further divided into two blocks by 
evenly sampling, each containing 64 points. Then the two 
blocks are performed FPS separately to obtain two output 
blocks, each of which contains 28 points. 28 is half of the 
predicted number 56 from the dual-stream prediction. Then, the 
two blocks are aggregated to obtain the final output cube with 
56 remained points. Dual-stream partition can be performed in 
parallel in all 8 cubes for sampling all the output points.

  
(a)                                                          (b)

(c)

(d)

Fig. 6. Dual-stream block-wise FPS (DSBF). (a) Sampling dominates the 
overall latency after both EFP and BMF are applied. (b) Normalized 
computational complexity and accuracy of the original FPS, PNNPU, and the 
proposed DSBF.  (c) The mechanism of DSBF. The ‘→’ represents the dual-
stream prediction data flow. The ‘→’ represents the dual-stream partition data 
flow. Black numbers represent points, while red numbers show the number of 
points used for prediction.  (d) The number of samples in each block.

A comparison of the predicted number of samples in each 
block of a point cloud among the original FPS (Truth Value), 
PNNPU, and the proposed DSBF is shown in Fig. 6d. The 
distribution of the proposed DSBF is similar to that of the 
original FPS. Alternatively, PNNPU shows significant errors
compared to the original FPS. To evaluate the accuracy of 
different techniques quantitatively, the mean absolute error 
(MAE) is employed as a performance metric, using the original 
FPS as a reference. Our method achieves 2.59× reduction in 
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MAE compared to PNNPU. The normalized computational 
complexity and the accuracy of PointNeXt-S with the original 
FPS, PNNPU, and the proposed DSBF are shown in Fig. 6b.
The example is with 1024 input points, 512 output points, and 
16 or 32 blocks. In the case of 16 (32) blocks, the DSBF
achieves a network overall accuracy (OA) of 91.21% (89.99%)
and mean accuracy (mAcc) of 87.36% (85.02%), with 1.91%
(3.69%) OA and 4.46% (7.51%) mAcc improvement,
compared to PNNPU, and 0.24% (1.46%) OA and 0.07%
(2.41%) mAcc loss, compared to the original FPS. Compared 
to the original FPS and PNNPU, the proposed DSBF saves 
14.22× (30.1×) computational complexity and introduces only
5.8% (3.1%) computational complexity overhead, respectively.
Therefore, the proposed DSBF significantly reduces the
computational complexity while maintaining relatively high
network accuracy.

V. EXPERIMENTAL RESULTS

In this section, the simulation results of the proposed PNN 
accelerator are presented. The performance of the proposed 
accelerator is also compared with the state of the art.

A. Experiment Setup
The proposed accelerator is implemented in the TSMC 28-

nm high-performance computing CMOS technology. Three 
types of standard cells (standard threshold voltage (SVT), high 
threshold voltage (HVT), and ultra-high threshold voltage 
(UHVT)) are used in the proposed accelerator. Cadence Genus 
is used for logic synthesis at 100 MHz and 0.9 V supply voltage. 
To evaluate the power consumption, Cadence NC-Sim is used 
to obtain the realistic switching activity of the hardware, in the 
form of TCF (toggle count format) files. The TCF files are then 
used for power evaluation with Cadence Genus. The 
PointNeXt-S network is trained in PyTorch and run as the 
benchmark on the proposed accelerator for evaluation. 
ModelNet40 is used as the evaluation dataset. The open-source 
tool Distiller is used for pruning, quantization to 8-bit data 
width, and retraining PointNeXt to recover the accuracy.

B. Performance Evaluation
The area and power breakdown of the proposed accelerator 

are shown in Fig. 7. The proposed accelerator can be configured 
to disable the three proposed techniques (EFP, BMF, and DSBF) 
to become a baseline version to evaluate the effectiveness of 
those techniques in detail. The improvement in speed and 
energy efficiency by using the three proposed techniques in 
PointNeXt-S at 0.9 V and 100 MHz is shown in Fig. 8.

As shown in Fig. 8, with the proposed EFP alone, the 
speedup and the effective energy efficiency improvement of the 
PNN accelerator are 1.07× and 5.51×, respectively, for 
PointNeXt-S, compared to the baseline. Note that the 
bottleneck of speed, when using EFP alone, is the FPS because 
the original FPS processing is inherently sequential with a 
latency of O(N2) cycles and a high computational complexity 
of O(N2). Therefore, DSBF is then used together with EFP. 
Compared to using EFP alone, the speed of the accelerator is 
boosted by 7.97×, meaning that the FPS algorithm is well 
accelerated in parallel by DSBF. Compared to the baseline, the 
energy efficiency of the accelerator is enhanced by 12.52×, by 
using EFP and DSBF together.

When using EFP and DSBF together, the bottleneck of 
speed is the large off-chip memory access of features. Thus, 
BMF is also applied to reuse features on-chip among MLPs 
afterwards, which achieves 21.1× reduction of total off-chip 
memory access. By combining EFP, DSBF, and BMF together, 
the speed and energy efficiency are enhanced by 1.8× and 1.1×
respectively, compared to only using EFP and DSBF. 
Furthermore, by combining EFP, DSBF, and BMF together, the 
speed and energy efficiency are improved by 15.32× and 13.6×
compared to the baseline. The accelerator takes only 0.53 ms 
and 0.13 mJ to process PointNeXt-S at 100 MHz with 0.9 V 
supply voltage.

(a)                                                        (b)
Fig. 7. (a) Area and (b) Energy breakdown of the proposed accelerator.

Fig. 8. The speedup and normalized effective energy efficiency by using the 
proposed techniques in PointNeXt-S.

Fig. 9. The speedup and effective energy efficiency improvement of each 
stage in PointNeXt-S.

The speedup and effective energy efficiency of each stage 
in PointNeXt-S are demonstrated in Fig. 9. The speedup and 
energy efficiency exhibit significant variations across different 
stages. The latency of the first FPS in Stage1 dominates the 
overall latency of inference in the baseline, accounting for 
93.4%. DSBF shortens the latency of Stage1 by 8.2×. 
Meanwhile, the latency and energy efficiency of all the stages 
are improved by EFP, especially in the deep stages, such as 
Stage4 and Stage5, where the channel sparsity of filters and 
features in these deep stages is largely improved, as mentioned 
in Section IV-A. Furthermore, BMF can eliminate the off-chip 
memory access of the large grouped intermediate features 
between MLPs in the shallow stages, as mentioned in Section 
IV-B. The application of BMF is further extended from shallow 
stages to deep stages of PNNs. 
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C. Comparisons with the State of the Art
The comparisons of the proposed point cloud accelerator 

with the state-of-the-art point cloud accelerators are detailed in 
Table I. As shown in Fig. 10, while running PointNeXt-S, the 
proposed accelerator improves the effective energy efficiency 
by 66.6×, 11.5×, 14.7×, 3.4×, 2.2×, 8.4×, and 3.1×, compared 
with Mesorasi [17], PointAcc [21], Point-X [16], Crescent [18], 
PNNPU [19], [14], and [15], respectively. The proposed 
accelerator reduces the per-frame energy consumption by 70.2×, 
12.1×, 2×, 3.6×, 11.6×, 45.4×, and 15×, compared with 
Mesorasi [17], PointAcc [21], Point-X [16], Crescent [18], 
PNNPU [19], [14], and [15], respectively. Meanwhile, to 
evaluate the performance in terms of per-area and per-energy-
consumption, an overall efficiency (Frame/mm2/mJ) is 
compared. The proposed accelerator improves the overall 
efficiency by 74.9×, 32.3×, 9.1×, 3.9×, 126.8×, 127.5×, and 27×, 
compared with Mesorasi [17], PointAcc [21], Point-X [16], 
Crescent [18], PNNPU [19], [14], and [15], respectively.

Fig. 10. The effective energy efficiency improvement, per-frame energy 
consumption reduction, and overall efficiency improvement, compared to the 
state-of-the-art works.

VI. CONCLUSIONS

In this paper, an energy-efficient real-time point cloud
neural network accelerator is proposed. To reduce the high
energy consumption and long latency caused by convolution, 
an efficient filter pruning is proposed. The redundant 
convolution of pruned filters and zero-value feature channels is 
skipped, while a large amount of inefficient off-chip memory 
access of grouping point features is eliminated. A block-wise 
multi-layer perceptrons (MLP) fusion is proposed to increase 
the on-chip reuse of features and significantly reduce off-chip 
memory access of point features in MLPs. Then, to eliminate 
the latency bottleneck of sampling, a dual-stream blocking 
method is proposed to enhance the parallelism of sampling
while maintaining the inference accuracy. All the proposed 
techniques are enabled on the system architecture with 
specialized computation flow. The proposed point cloud neural 
network accelerator is implemented in the TSMC 28-nm 
CMOS technology. Benchmarked with the PointNeXt-S 
network classifying the ModelNet40 dataset, the proposed 
accelerator achieves an effective energy efficiency of 12.65 
TOPS/W and a per-frame energy consumption of 0.13 
mJ/frame, with all the optimization techniques while running at 
100 MHz with 0.9 V supply voltage and 8-bit data width. 
Compared to the state-of-the-art point cloud neural network
accelerators, the proposed accelerator enhances the energy 
efficiency and the per-frame energy consumption by up to 
66.6× and 70.2×, respectively, thereby providing an attractive 
option for edge computing.
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TABLE I
COMPARISONS WITH THE STATE OF THE ART

Mesorasi [17]
MICRO 2020

PointAcc [21]
MICRO 2021

Point-X [16]
MICRO 2021

Crescent [18]
ISCA 2022

PNNPU [19]
VLSI 2021

[14]
VLSI 2022

[15]
ISSCC 2023 This work

Technology TSMC 16 nm TSMC 40 nm 28 nm TSMC 16 nm 65 nm 65 nm 28 nm TSMC 28 nm

Area [mm2] 1.55 3.9 6.8 1.55 16 4.1 2.69 1.46

SRAM [KB] 1624 274 545.4 1622.8 364 108.5 176 128

MAC 256 256 2048 256 4608 100 256 1024

Frequency [MHz] 1024 1024 1024 1024 50-200 50-300 40-450 100

Data Type 16b A: 16b, W: 8b A: 16b, W: 16b/8b 16b 8b 8b 8b 8b

Network Type PointNet++ PointNet++ DGCNN, PointNet PointNet++ VoteNet MinkowskiNet SECOND PointNeXt-S

Effective Performance 
[GOPS] 467 1168.16 1888.92 @ DGCNN 1791.02 @ 

PointNet++

614.4 @ 200 
MHz,

153.6 @ 50 MHz

62 @ 300 MHz,
10.3 @ 50 MHz

193.8 @ 400 
MHz 3003

Power Consumption 
[mW] 2452.42 1057.08 2200 @ DGCNN 487.24 @ 

PointNet++
237 @ 200 MHz,
27.2 @ 50 MHz

80 @ 300 MHz,
6.9 @ 50 MHz

6.6 @ 60 MHz, 
125 @ 400 MHz, 237.4

Effective Area 
Efficiency [GOPS/mm2] 301.46 299.53 277.78 @ DGCNN 1155.5 @ 

PointNet++
0.55 @ 200 MHz,
0.14 @ 50 MHz

15.1 @ 300MHz,
2.5 @ 50 MHz 72 @ 400 MHz 2056.9

Effective Energy 
Efficiency [TOPS/W] 0.19 1.1 0.8586 @ DGCNN 3.68 @ 

PointNet++
2.59 @ 200 MHz,
5.65 @ 50 MHz

0.78 @ 300 MHz
1.5 @ 50 MHz

1.55 @ 400 MH,
4.14 @ 60 MHz 12.65

Energy Consumption 
[mJ/Frame] 8.92 1.54 1.6 @ DGCNN,

0.25 @ PointNet
0.46 @ 

PointNet++
3.2 @ 200 MHz,
1.47 @ 50 MHz

11.1 @ 300 MHz,
5.77 @ 50 MHz

5.0 @ 400 MHz,
1.9 @ 60 MHz 0.13

Frame Rate [Frame/s] 274.9 687.2 1307.1 @ DGCNN,
10000 @ PointNet

1053.4 @ 
PointNet++

84.4 @ 200 MHz,
21.1 @ 50 MHz

7.2 @ 300 MHz,
1.2 @ 50 MHz

16.9 @ 400 MHz,
3.3 @ 60 MHz 1873

Overall Efficiency 
[Frame/mm2/mJ] 0.072 0.167 0.09 @ DGCNN, 

0.59 @ PointNet
1.4 @ 

PointNet++
0.02 @ 200 MHz,
0.04 @ 50MHz

0.02 @ 300 MHz,
0.04 @ 50 MHz

0.07 @ 400 MHz,
0.20 @ 60 MHz 5.39
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