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Abstract—Three-dimensional (3-D) understanding or inference
has received increasing attention, where 3-D convolutional neural
networks (3D-CNNs) have demonstrated superior performance
compared to 2D-CNNs, since 3D-CNNs learn features from
all three dimensions. However, 3D-CNNs suffer from inten-
sive computation and data movement. In this article, Sagitta,
an energy-efficient low-latency on-chip 3D-CNN accelerator, is
proposed for edge devices. Locality and small differential value
dropout are leveraged to increase the sparsity of activations. A
full-zero-skipping convolutional microarchitecture is proposed to
fully utilize the sparsity of weights and activations. A hierar-
chical load-balancing scheme is also introduced to increase the
hardware utilization. Specialized architecture and computation
flow are proposed to enhance the effectiveness of the proposed
techniques. Fabricated in a 55-nm CMOS technology, Sagitta
achieves 3.8 TOPS/W for C3D at a latency of 0.1 s and 4.5
TOPS/W for 3D U-Net at a latency of 0.9 s at 100 MHz and
0.91-V supply voltage. Compared to the state-of-the-art 3D-CNN
and 2D-CNN accelerators, Sagitta enhances the energy efficiency
by up to 379.6× and 11×, respectively.

Index Terms—3-D convolutional neural networks (3D-CNNs),
3-D inference, edge computing, energy efficiency, sparsity,
speedup.

I. INTRODUCTION

IN RECENT years, deep neural networks (DNNs) are
widely applied for various inference tasks, such as image

classification [1], natural language processing [2], and pat-
tern recognition [3]. As one of the most popular DNNs,
convolutional neural networks (CNNs) have achieved great
success in 2-D image related applications. Meanwhile, 3-D
deep learning [4] has received increasing attention owing to its
wide range of applications, such as action recognition [5], [6],
air quality measurement [7], virtual reality (VR) [8], aug-
mented reality (AR) [9], autonomous driving [10], stereo
matching [11], and physiological signal processing [12], [13].
These applications are precisely the edge computing tasks
performed by wearable, mobile, and Internet of Things (IoT)
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devices, including but not limited to robots [14], drones,
smart watches, smart phones, environment monitoring instru-
ments, VR/AR glasses, and health monitoring devices. The
inference tasks involved in these applications include video
classification [5], medical image analysis [15], and volumetric
segmentation [16]. The targets in these tasks consist of 3-D
voxels which are regularly arranged in a 3-D grid [16], [17].
These tasks require feature extraction from the entire 3-D
voxel set rather than each individual 2-D pixel slice. 3-D con-
volutional neural network (3D-CNN) [18] has been proven
to be more effective in these tasks compared to the conven-
tional 2D-CNN, because 3D-CNN convolves across all three
dimensions, fully exploiting the global structure and local
information simultaneously [18]. 3D-CNN is therefore highly
desirable for mobile, wearable, and IoT devices. Various neural
architectures for 3D-CNN have been proposed, e.g., C3D [18],
3D U-Net [19], VoxNet [16], and 3D ShapeNets [20]. From
the perspective of network architecture, 3D-CNN is inflated
from 2D-CNN with an extra convolutional dimension across
depth. Therefore, the amount of computation and parameters
that are required in 3D-CNN increases significantly compared
to 2D-CNN, resulting in considerable energy consumption and
latency. These could be serious concerns in edge computing
for wearable, mobile, and IoT devices. These devices need
to sense the environment and interact with people in real
time and therefore require low latency, yet suffer from small
batteries. Therefore, on-chip 3D-CNN accelerators with high-
energy efficiency and low latency are highly desirable at the
edge.

Exploring the sparsity in CNNs is a popular way for accel-
eration while boosting the energy efficiency. Studies show that
there are numerous zeros in the feature maps and weights of
CNNs [21]. The sparsity in a layer of CNN is defined as the
ratio of zeros in the weights (weight sparsity) or activations
(activation sparsity) of this layer. The sparsity in certain convo-
lution layers of popular CNNs is even up to 90%. If these zeros
are skipped in the calculations, the accuracy is not affected at
all. Involving those zeros in the calculations only increases the
data storage burden, and wastes significant energy and com-
putation time. If these zeros can be effectively skipped, the
inference time and energy consumption of the entire network
would be reduced significantly.

For 2D-CNN, a variety of CNN accelerators have explored
skipping zeros in activations and/or weights. Cnvlutin inves-
tigates the sparsity in activations [22], reducing the energy
consumption without any loss in accuracy. Although Cnvlutin
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gates the multiply-accumulate (MAC) elements for zero
activations, the computation cycles are unfortunately not
skipped [23]. In NullHop [24] and [25], the computation
cycles are successfully skipped by fetching only nonzero acti-
vations from on-chip memory into MAC array to be convolved
with the weights corresponding to these nonzero activations.
Furthermore, those zero activations are not required to be
stored on chip, saving the storage space. However, zero
weights are still not skipped in NullHop and [25]. In [21],
SCNN further exploits the sparsity in both weights and activa-
tions by using the sparse planar-tiled input-stationary Cartesian
product dataflow to maximize the reuse of weights and acti-
vations within a set of distributed processing elements (PEs).
SCNN uses an index-based encoding which however intro-
duces storage overhead for the indexes of nonzero weights
and activations. In [26], STICKER explores the sparsity of
both activations and weights to improve the computation and
storage efficiency. The nonzero activation-weight pairs are
multiplied, the addresses of which are calculated from the
indexes of the nonzero activations and weights. STICKER
requires an external central processing unit (CPU) to con-
stantly rearrange the activations in external dynamic random
access memory (DRAM) to reduce memory write collisions
for partial sums. Since adopting the channel-last dataflow, both
SCNN and STICKER suffer from memory contention and
compute stalls, thereby degrading the performance. In [27], the
channel-run-length index and intra-kernel weight index of ker-
nels are both used to fetch the corresponding activations to skip
empty kernels and zero weights. However, the hardware com-
plexity is considerably high. ZeNA [28] and TensorDash [29]
skip the computations with both zero weights and zero activa-
tions, while both of them still need to store and transfer zero
activations and weights. Meanwhile, when nonzero activa-
tions and weights are extremely sparse, they cannot guarantee
a valid input pair to MAC in every cycle, thereby limit-
ing the PE utilization ratio substantially. SNAP [30] and
TwoNullHop [31] not only skip both zero weights and acti-
vations but also skip the storage and computations of those
zero weights and activations. However, to support compressed
forms of weights and activations and to balance workloads,
SNAP increases the hardware complexity significantly. The
performance of SNAP also degrades at low-bit widths (e.g., 8-
bit fixed-point or lower) since the control logic used for zero
skipping occupies the majority of the latency. TwoNullHop
is inefficient on small networks. Furthermore, a lot of time
is spent on the input image normalization and reordering off
chip with TwoNullHop.

Although the above zero-skipping methods dramatically
reduce the number of convolution operations by skipping
invalid multiplications, load imbalance is caused by differ-
ent sparsity among MACs and among PEs. To address load
imbalance, the two kernels with complementary sparsity are
assigned to a PE group with two PEs in [32]. Then, the two
kernels are switched between the two PEs periodically to bal-
ance the inter-PE load. However, large storage inside the PE
group is required to buffer activations. Extended from [32],
a scheduler is employed in [33] to balance the workload of
the four PEs in a PE cluster. The scheduler assigns not only

the two kernels with complementary sparsity but also the two
input feature map tiles with complementary sparsity to each
PE. However, an external host processor is required in [33]
to constantly compute the sparsity of kernels and input fea-
ture map tiles. The external host processor sorts the kernels
and input feature map tiles in the order of the sparsity and
then controls the on-chip scheduler. In [34], a scheduler is
designed to skip the convolution of similar input feature maps.
These input feature maps with the same ID are similar and thus
should be skipped for reading and computation. The scheduler
compares the IDs of the input feature maps to skip fetch-
ing the similar input feature maps. Therefore, the scheduler
ensures that valid input feature maps are fed into PE array
in each cycle. However, the scheduler is only suitable for the
scheduling of input feature maps, yet not able to schedule
filters.

As for the hardware implementation of 3D-CNN, uniform
templates are used in [35] to build accelerators for 2D-CNN
and 3D-CNN based on the Winograd algorithm. Multiple
clusters combined with hierarchical reconfigurable buffers are
applied in [36]. Therefore, different spatial and temporal tiling
strategies are flexibly supported to exploit the in-memory
reusability of 3D-CNN. However, such architectures entail
the integration of multiple PE arrays, and incur additional
data exchanges between PE arrays and on-chip buffers. Thus,
considerable area and energy cost are incurred. In [37], a
hardware-aware DNN weight pruning algorithm is proposed
for 3D-CNN by leveraging alternating direction method of
multipliers (ADMMs). In [38], a flexible Winograd-based
decomposition method is proposed to reduce multiplication
operations. A fusion 2-D/3-D computing engine is also intro-
duced to support different strides and different filter sizes.
In [39], a temporal redundancy elimination mechanism is
implemented by skipping the computations with the same
frame tiles and filters, while the temporal reusability is dis-
abled in this case. However, these works have not fully
exploited the sparsity of weights or activations in 3D-CNN and
are only verified on field programmable gate array (FPGA) or
by logic synthesis.

Till now, no 3D-CNN accelerator has been validated via sili-
con on chip. To achieve this purpose for edge applications, an
energy-efficient low-latency 3D-CNN accelerator is desired,
where exploring the sparsity in 3D-CNN could play a criti-
cal role. However, there are still several critical issues to be
solved.

1) The activations are not sufficiently sparse in various
CNNs, especially compared to weights, thereby restrict-
ing the effectiveness of sparse acceleration.

2) Zero skipping has been barely explored in the previous
3D-CNN hardware implementations. How to skip all the
zeros in both activations and weights in 3D-CNNs is
still an obstacle toward achieving the maximal energy
efficiency.

3) Balancing the loads among PEs is also a great challenge
after skipping zeros in activations and/or weights.

In this article that is extended from our work [40],
an energy-efficient low-latency on-chip 3D-CNN accelera-
tor, Sagitta, is proposed for real-time 3-D inference on edge
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Fig. 1. Computation process of the convolution layers in 3D-CNN.

devices. A threshold-based differential slice sparsity enhance-
ment method is proposed to increase the sparsity of differential
slices by dropping out small differential values. Furthermore,
to skip both the redundant operations and redundant com-
putation cycles for a wide sparsity range of activations and
weights, a full-zero-skipping microarchitecture is proposed.
To address the load imbalance issue after skipping zeros,
a hierarchical load-balancing scheme is proposed. All the
proposed techniques are enabled on the specialized hardware
architecture, which is also optimized for efficient data flow
of 3D-CNN. With the proposed techniques and architecture,
Sagitta reduces the latency by up to 17.2× and 19.5×, com-
pared to the baseline implementation, while running the C3D
network classifying the UCF101 data set [41] and 3D U-Net
segmenting BraTS 2020 [42], respectively. Implemented in the
UMC 55-nm low-power CMOS technology, Sagitta achieves
an energy efficiency of 3.8 TOPS/W for C3D and 4.5 TOPS/W
for 3D U-Net at 100 MHz and 0.91-V supply voltage.

This article is organized as follows. The background of
3D-CNN and the motivations of this work are introduced
in Section II. The system architecture innovations are stated
in Section III. The proposed techniques that enable low-
latency and high-energy efficiency are presented in Section IV.
Experimental results of the proposed 3D-CNN accelerator are
discussed in Section V. This article is concluded in Section VI.

II. BACKGROUND AND MOTIVATIONS

In this section, the basic information about 3-D convolution
operation, the classical network architecture of 3D-CNN, and
the corresponding data sets are introduced. The motivations of
the proposed techniques are also presented.

A. Preliminaries

In a 3-D convolution, the filter moves in three directions.
3-D convolution is therefore often used in 3-D images, such
as video and volumetric imaging.

The computation process of the convolution layers in 3D-
CNN is described as follows, which is also illustrated in Fig. 1

Output [m]
[
g
]
[e]

[
f
]

=
C∑

c=0

D∑

d=0

R∑

r=0

S∑

s=0

Filter[m][c][d][r][s] × Input [c]

[
g ∗ stride + d

]
[e ∗ stride + r]

[
f ∗ stride + s

]
. (1)

C, T , H, and W are the number of channels, the number
of slices, the height, and the width of input feature maps,
respectively. D, R, and S are the number of slices, the height,

(a)

(b)

Fig. 2. Network architecture of classical 3D-CNNs. (a) Architecture of the
C3D network [18]. (b) Architecture of the 3D U-Net network [19].

and the width of filters, respectively. M, G, E, and F are the
number of channels, the number of slices, the height, and the
width of output feature maps, respectively.

As shown in Fig. 1, in each layer, a set of C input feature
maps of size T × H × W are convolved by M sets of filters of
size C × D × R × S, yielding M output feature maps of size
G × E × F. 2-D convolution is the special case of 3-D con-
volution when both T and D are equal to 1. The computation
complexity of the convolution layers is 2×M×E×F×R×S×C
in 2D-CNN while 2 × M × E × F × G × R × S × D × C in
3D-CNN.

B. Classical Network Architecture of 3D-CNN

C3D is a classical 3D-CNN architecture for classifying
actions in videos [18]. C3D can model appearance and motion
information simultaneously and outperforms 2D-CNN on
video analysis tasks. C3D can be simply extended from VGG-
16 [43] with a homogenous architecture containing 3 × 3 × 3
convolutional filters followed by 2 × 2× 2 pooling at each
layer. C3D consists of eight convolution layers, five pool-
ing layers, and three fully-connected (FC) layers as shown
in Fig. 2(a).

Similarly, by replacing all 2-D operations of U-Net [44]
with their 3-D counterparts, 3D U-Net is proposed in [19]
for volumetric segmentation of 3-D images. As an indica-
tor of inference accuracy, dice score represents the similarity
between the labeled image and the predicted image with a
range from 0 to 1 and is used for the evaluation of 3D U-Net
in this article. The network architecture of 3D U-Net is illus-
trated in Fig. 2(b). Similar to C3D, 3D U-Net contains 30
3 × 3 × 3 convolutional filters followed by 2 × 2 × 2 pooling
or 2 × 2 × 2 up-sampling.

C3D is the representative for 3-D classification applica-
tions, while 3D U-Net is for 3-D segmentation applications. To
train and compress neural networks, we use Distiller [45], an
open-source Python package for neural network compression
research that is developed by Intel. For C3D, UCF101 [41],
a data set of 101 human action classes from videos in the
wild, is used as the evaluation data set. For 3D U-Net,
BraTS 2020 [42], a state-of-the-art, accurately annotated, and
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Fig. 3. Distribution of nonzero activations in C3D and 3D U-Net.

large-scale data set of 3-D brain tumor segmentation, is used
as the benchmark data set. Prior works have shown that lin-
ear quantization to 8 bits does not cause accuracy loss for
2D-CNNs [46], [47], [48], which is also verified in this work
for 3D-CNNs.

C. Motivations

3D-CNNs have more parameters and computations than
2D-CNNs. The data feature of 3D-CNNs, such as sparsity,
should be heavily leveraged to enhance the energy efficiency
and shorten the inference latency. Quantization and pruning are
the primary source of weight sparsity. The activation sparsity
mainly results from the activation functions, such as rectified
linear unit (ReLU). Quantization also increases the sparsity of
activation [49].

The input feature maps of each convolution layer in 3D-
CNN are usually a sequence of consecutive slices, the number
of which is T , as shown in Fig. 1. There are plenty of similarity
between any two consecutive slices for input feature maps,
which is the locality. The locality could be potentially used to
increase the activation sparsity. If we subtract the back slice
from the front slice, the differential slice T_diff is obtained as

Tdiff = In[t + 1][C][H][W] − In[t][C][H][W]. (2)

In this way, the original slices are converted into one base
slice and a series of differential slices. The distribution of
quantized nonzero activations is illustrated in Fig. 3, when
activations and weights are quantized to 8 bits and weights
are pruned to the sparsity of 97.6% and 96.3% for C3D and
3D U-Net, respectively. Compared to the raw slices across all
layers, the sparsity of differential slices in C3D grows slightly
from 54.5% to 57.5%, while 3D U-Net even drops from 89.3%
to 82.5%. Meanwhile, the sparsity of activations in the dif-
ferential slices is still significantly lower than the sparsity of
weights (e.g., 97.6% in C3D). Direct leveraging the locality
of inputs therefore cannot enhance the sparsity of activations
substantially. Therefore, a specialized method to increase the
sparsity of activations beyond merely using locality is required.

To leverage the sparsity in activations and weights, it is crit-
ical to keep only nonzero data and exclude zero data from data
movement and computations. Furthermore, only nonzero input
pairs should be fetched every cycle to achieve high throughput.
An efficient zero-skipping architecture is therefore needed to
ensure there are sufficient valid input pairs being fed to MAC
to maintain high-MAC utilization ratio, especially in the case
of high sparsity.

Fig. 4. Hardware architecture of the proposed 3D-CNN accelerator.

The hardware architecture is divided into different com-
putation levels with different computation flows. However,
a serious issue in these designs is the mismatch between
the granularity of computation levels and the granularity of
the load balance schedule. Although a fine-grained schedule
leads to high-PE utilization ratio, the hardware complexity
increases significantly. While a coarse-grained schedule has
lower hardware complexity, the load imbalance issue is still
severe. Therefore, a design with mixed granularity for differ-
ent computation levels, which benefits from twofold, is a more
promising choice.

III. SYSTEM ARCHITECTURE OVERVIEW

The system architecture of the proposed 3D-CNN acceler-
ator Sagitta is introduced in this section. The architecture is
specially designed to enable the 3-D convolution of differential
input feature maps. To obtain high-energy efficiency and low
latency, the computation flow of the proposed PE is optimized
for high-data reuse, load balance, low-hardware complexity,
as well as the configurability. The high-level hardware archi-
tecture is introduced in Section III-A. The computation flow
of the proposed PE is presented in Section III-B.

A. Hardware Architecture

The hardware architecture of Sagitta is shown in Fig. 4. The
accelerator consists of a compute module, a memory module,
a control module, and an I/O interface. The compute mod-
ule is made up of 16 PEs, each of which contains 27 MACs,
a PE controller, a scheduler, weight register files, activation
register files, partial sum register files (PRF, implemented by
flip-flops), and partial sum memory [PMEM, implemented by
static random-access memory (SRAM)]. The memory mod-
ule is composed of 16 SRAM banks of 8 KB, each of which
can be dynamically allocated for the weights and activations
(j + k = 16 and j, k ∈ [1, 15]) as shown in Fig. 4. The con-
trol module receives the instructions from the I/O interface
and then controls the computation schedule of the compute
module and the SRAM allocation of the memory module.
Only nonzero weights and activations are fetched from off-
chip memory and stored in allocated SRAM banks following
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Fig. 5. Convolution process in the MAC array.

the system configuration. The activations flow from PE0 to
PE15 in a 1-D systolic fashion to guarantee that the activa-
tions of all PEs are the same, which is beneficial for inter-PE
load balance [50]. Once the current PE finishes the convolu-
tions, the activations are transferred to the next PE. Activations
are reused among PEs. The weights are broadcasted [50] from
the multibanked buffer to all PEs [50]. The 16 PEs are allo-
cated 16 different filters. Each PE executes the convolution of
a filter and input feature maps so that 16 output feature map
channels are computed in parallel.

Within a PE, the scheduler is responsible for feeding activa-
tions and weights from activation and weight register files into
each MAC and storing partial sums in PRF. Partial sums are
added by propagation to compute differential output feature
maps in PMEM. All operations can be executed in differential
format except the nonlinear ReLU and pooling. Therefore, the
raw output feature maps need to be recovered before being
sent to the POOL&ReLU module. After pooling and ReLU
on the original output feature maps, the POOL&ReLU module
converts the raw output feature maps back to differential out-
put feature maps. The hardware to make conversion between
the raw feature maps and differential feature maps does not
degrade performance and accounts for only 1.2% of the total
area and 1.4% of the total power consumption (by simula-
tion) of the accelerator. Finally, the differential output feature
maps are compressed into a format of nonzero values and bit-
vectors, and then sent back to the external memory via the I/O
interface.

B. Computation Flow of PE

In this section, the computation flow of the proposed PE is
presented in detail. The computation flow is specially designed
to enable 3-D convolution, as shown in Fig. 6. To perform
1-D convolution in the T dimension of the 3-D convolution
(see Fig. 1), PMEM in PE is designed to accumulate the
partial sums of the 2-D convolution computed by the MAC
array. Furthermore, various schemes are adopted to enhance
the computing efficiency of the proposed accelerator. First, to
reduce the amount of partial sums and align the addresses
of the partial sums, the channel-first dataflow is adopted in
the MAC array of PE [30], as shown in Fig. 5. The channel-
first dataflow also simplifies task scheduling, thereby resulting
in low-hardware complexity. Second, the sparsity difference
between the first raw input slice and the following differential
input slices is large. To reduce the amount of required cache
and balance the convolutions of the fixed filter and the differ-
ent input slices, the input slices are serially fed into PE for

computation. Third, to enhance the energy efficiency, the input
feature maps are further reused in the D dimension, while the
filters are further reused in the T dimension in the MAC array.

In the proposed PE, the allocated filters are stored in the
weight register file. The input slices are stored in the activation
register file. The convolution process of an input slice with the
filter slices is a channel-first dataflow in the proposed MAC
array. In the channel-first dataflow, the activations and weights
are ordered in the channel dimension first, then in rows, and
in columns afterward according to the 2-D pixel-location. As
defined in (1), m, c, d, r, and s are the indexes of the filter, the
channel, the slice, the row, and the column of an element in
filters, respectively. Similarly, c, t, h, and w are the indexes of
the channel, the slice, the row, and the column of an element
in input feature maps, respectively. A bundle of activations
contains data in matrix (c, t, h, w), where c and w represent
all elements along the channel dimension and width dimen-
sion, respectively. A sub-bundle of activations contains data
in matrix (c, t, h, w), where c represents all elements along
the channel dimension. A bundle of weights contains data in
matrix (m, c, d, r, s), where c also represents all elements
along the channel dimension. The convolution of a bundle of
weights and a bundle of activations is defined as a task which
is allocated to a MAC at a time. Therefore, the convolution of
the input slice with the filter slices can be divided into multiple
tasks. The convolution of a filter slice with an input slice that
is shown in Fig. 5 is in two steps.

Step_i: A weight bundle of matrix (m, c, d, r, s) = (1,
32, 1, 1, 1) is convolved with an activation bundle of matrix
(c, t, h, w) = (32, 1, 1, 16) to compute a bundle of partial
sums, as noted by ① and ② in Fig. 5. To compute the whole
input slice, the bundle convolution is then performed across
the column direction, as noted by ③. Meanwhile, the addresses
of the computed partial sums are aligned automatically with
themselves because the address of the partial sums computed
by one MAC stays the same until the MAC completes the
convolution between an activation sub-bundle of matrix (c, t, h,
w) = (32, 1, 1, 1) and a weight bundle, and switches to a new
activation sub-bundle (change of w) [30]. Furthermore, the
partial sums can be immediately reduced along the channel
dimension from c to 1 [30].

Step_ii: The corresponding 9 (R × S = 9 in Fig. 5) rows
of partial sums are accumulated to get the final partial sum
matrix (m, g, e, f ) = (1, 1, 1, 16) of the input slice. The final
partial sums are stored in the PRF.

An example of the computation flow of PE when D = 3 is
shown in Fig. 6. DPm

n represents the differential partial sums
obtained from the convolution of the nth (1 ≤ n ≤ T) differ-
ential input slice and the mth (1 ≤ m ≤ D) filter slice. DISn,
DOSn, and ROSn represent the nth differential input slice (IS),
the nth differential output slice (OS), and the nth raw output
slice, respectively. As illustrated in Fig. 6, the G output slices
of 3-D convolution that are shown in Fig. 1 are calculated by
a PE in two phases.

Phase_i: From the first input slice to the Tth input slice,
the T input slices are serially fed to PE and stored in the
activation register file. Note that the first input slice has
the raw data while the rest have the differential values. At
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Fig. 6. Computation flow inside one PE.

the nth cycle, the MAC array performs a convolution of
the nth input slice and the D fixed filter slices to obtain
DP1

n, DP2
n, and DP3

n which are stored in PRF. At the same
time, PMEM_3, PMEM_2, PMEM_1, and PMEM_0 store the
computed DP1

n−1, (DP1
n−2+DP2

n−1), DOSn−2, and ROSn−3,
respectively.

Phase_ii: At the (n + 1)th cycle, DP1
n, DP2

n, and DP3
n

in PRF computed in Phase_i are added to 0, DP1
n−1 of

PMEM_3 (generated at the nth cycle), and (DP1
n−2+DP2

n−1)
of PMEM_2 (generated at the nth cycle), to obtain DP1

n
of PMEM_3, (DP1

n−1+DP2
n) of PMEM_2, and DOSn−1 of

PMEM_1, respectively. Meanwhile, DOSn−2 in PMEM_1
(generated at the nth cycle) is added to ROSn−3 in PMEM_0
(generated at the nth cycle) to restore ROSn−2, which is stored
in PMEM_0. ROSn−3 (generated at the nth cycle) is sent to
the POOL&ReLU module.

In Phase_i, the convolution of the three fixed filter slices
and the serial input slices is the 2-D convolution in the H ×W
dimension of 3-D convolution (see Fig. 1). In Phase_ii, the
addition of the data in PMEM_3, PMEM_2, and PMEM_1
with the three differential partial sums in PRF is the 1-D con-
volution in the T dimension of 3-D convolution (see Fig. 1).
Therefore, a PE computes the complete 3-D convolution of
three filter slices and T input slices.

In the proposed PE computation flow, the filters are con-
volved with T input slices and are therefore reused in the
T × H × W dimension of 3-D convolution while the filters
are reused only in the H × W dimension of 2-D convolu-
tion. Similarly, the input feature maps are convolved with D
filter slices and are thus reused in the D × R × S dimen-
sion of 3-D convolution while the input feature maps are
used only in the R × S dimension of 2-D convolution. The
additional reuse of the filters and input feature maps leads
to higher energy efficiency and lower latency by reducing
memory access. Since the sparsity of the differential input
slices is typically higher than that of the first raw input slice
(e.g., 11.2× higher in Conv2 of C3D), all input slices are
computed serially rather than in parallel to mitigate load
imbalance. Since the POOL&ReLU module needs to con-
vert the raw output slices back to the differential output
slices according to (2), the serial computation flow signifi-
cantly reduces the amount of required cache and saves the
chip area.

Fig. 7. Activation sparsity at different thresholds in C3D and 3D U-Net.

IV. STRATEGIES ENABLING LOW-LATENCY AND

HIGH-ENERGY EFFICIENCY

In this section, a specialized method to increase the sparsity
of activations by leveraging the differential value dropout is
presented. To fully take advantage of highly sparse activations
and weights, an efficient zero-skipping architecture is proposed
for acceleration. A hierarchical load balancing (HLB) method
is also introduced to solve the imbalance among both PEs and
MACs inside each PE after full zero skipping.

A. Threshold Differential Value Dropout

As discussed in Section II-C (see Fig. 3), the differential
slices are not sufficiently sparse in the convolution layers. By
counting the number of each absolute value from 1 to 128
(8-bit), it is noticeable that small values, such as 1, 2, and 3,
take a large portion. Because the slices are temporally/spatially
sequential, the small differential values are the tiny tempo-
ral/spatial changes, which could be meaningless noise, such as
light change or camera jitter. The meaningless noise in the con-
volution layers does not improve the performance of networks.
Therefore, those small differential values below the selected
threshold could be dropped out with negligible accuracy loss,
as described

f (x) =
{

0, for |x| ≤ threshold
x, for |x| > threshold

(3)

threshold is the selected threshold. x is the differential values.
This technique is named threshold differential value dropout

(TDVD). TDVD is implemented in the POOL&ReLU mod-
ule (see Fig. 4). To demonstrate the effect of TDVD on the
activation sparsity enhancement, the activation sparsity under
different thresholds is shown in Fig. 7. The overall activation
sparsity of all the convolution layers increases significantly
with a higher threshold. Particularly, for both C3D and 3D
U-Net, the overall activation sparsity increases to 86.0% and
97.5% when threshold = 5.

Although a higher threshold benefits the performance of
the accelerator because of the increased sparsity, the accuracy
may be degraded to an intolerable level. To investigate how the
threshold in each layer influences the accuracy of the network,
the accuracy loss is scanned with the threshold increased from
0 to 20 in the first three convolution layers, as illustrated in
Fig. 8. The benchmark is the quantized and pruned C3D. As
shown in Fig. 8, the accuracy tolerance to the threshold varies
among layers. Furthermore, although a large threshold adopted
by TDVD leads to explosive accuracy loss, a small threshold
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Fig. 8. Sensitivity of the accuracy to the threshold in the first three
convolution layers in C3D.

can ensure negligible accuracy loss while obtaining substantial
sparsity improvement.

A suitable threshold is the key to tradeoff sparsity with
accuracy. However, it is difficult to find the optimal thresh-
old combination due to the large depth of neural networks
and the wide range of the threshold. A method to automati-
cally learn the threshold for different layers is proposed, where
the threshold is a learnable parameter as part of the network
loss. The threshold is used to dropout the small values of Tdiff
in (2). We use an activation function called Hard Shrinkage
to perform the dropout operation. (Tdiff/threshold) is the input
of the Hard Shrinkage

T ′
diff = HardShrinkage

(
Tdiff

threshold

)
∗ |threshold|. (4)

T ′
diff, the differential values after TDVD, can be used for

network inference. |threshold|, the norm of threshold, is used
to recover the range of T ′

diff. The inference loss function
lossinference is maintained as follows:

lossinference = criterion(outputs, labels). (5)

Larger threshold is harmful for the accuracy. Therefore,
optimizing lossinference suppresses the threshold. To increase
the activation sparsity, we add a loss function lossthreshold to
increase the threshold

lossthreshold = λ

‖threshold‖ + ε
(6)

where ‖threshold‖ is the L2 norm of threshold. λ is a hyper-
parameter that is used to tune the value of the threshold.
ε = 1 × 10−5 is a small number for numerical stability.
Therefore, the final loss function of the network is

loss = lossinference + lossthreshold. (7)

As λ increases, the optimizer tends to decrease lossthreshold
and increase threshold and the activation sparsity. By adjusting
λ and then retraining C3D and 3D U-Net, the corresponding
sparsity and accuracy/dice score are shown in Fig. 9.

When λ = 2 (threshold = (10, 7, 5, 5, 5, 5, 5, 2))

in C3D, 4.6× nonzero activation reduction is obtained
with 1.3% accuracy loss. The sparsity of activations is
increased from 57.5% to 90.8%. When λ = 2 (threshold =
(0, 1, 4, 5, 3, 3, 4, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5)) for 30 3×3×3 convolutions
mentioned in Section II-B in 3D U-Net, 12.5× nonzero

Fig. 9. Accuracy/dice score loss and sparsity improvement with increasing
learnable threshold in C3D and 3D U-Net.

Fig. 10. Comparison of different zero-skipping methods.

activation reduction is achieved with 1.8% dice score loss.
The sparsity of activations is increased from 82.5% to 98.6%.
Accordingly, considering the significant sparsity enhancement
with negligible accuracy/dice score loss, these two dropout
schemes are adopted in the rest of this work for performance
evaluation.

B. Flag-Based Full Zero Skipping

Clock gating is one of the efficient zero-skipping meth-
ods by gating circuits once encountering zero activations or
weights [51]. Those skipped zeros are still required to be
fetched from SRAM arrays or registers to computation units.
Therefore, for the example in Fig. 10, the clock gating method
requires eight cycles to process these data. With the previously
published activation zero-skipping [24], [25], [52] or weight
zero-skipping methods, three cycles are still needed even when
either activation or weight is zero in two of the three cycles
for the example in Fig. 10. A full-zero-skipping method is
proposed in this work, which requires only one cycle, as shown
in Fig. 10. Only when both activation and weight are nonzero,
the nonzero data are fetched for computation.

The proposed microarchitecture to realize full zero skipping
is illustrated in Fig. 11. All the activations and weights are
checked whether they are zero or not. The nonzero activations,
the nonzero weights, and the zero/nonzero status are stored in
the off-chip DRAM array and then fetched into the on-chip
memory module (mentioned in Fig. 4 and implemented by
SRAM). When the activations and weights are required for
computation, the zero/nonzero status of these data is loaded
from the memory module into the ACT bit-vector registers
and WEI bit-vector registers via the on-chip bus in the accel-
erator. Meanwhile, only the nonzero activations and weights
are loaded from the memory module into the ACT buffer and
WEI buffer. A bitwise AND of the ACT bit-vector and WEI
bit-vector is performed to get an AND bit-vector, which indi-
cates where the activation and weight are both nonzero so that
the multiplication is valid. To fetch the nonzero activation and
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Fig. 11. Proposed microarchitecture of full zero skipping.

weight, the ACT/WEI skip bit-vector is obtained by perform-
ing a bitwise AND of the ACT/WEI bit-vector and the SET
bit-vector. In this way, these “ones” in the ACT and WEI bit-
vectors, which are high bits compared to the first “one” in
the AND bit-vector, are dropped out. The number of “ones”
that are low bits in the ACT/WET skip bit-vectors indicates
the address offset of the activation and weight, respectively,
in the buffers. Meanwhile, the ACT/WEI bit-vector is updated
by performing a bitwise AND of the ACT/WEI bit-vector and
the SET bit-vector. The computation unit fetches, from the
buffers, only the data referenced by these address offsets (3
and 2 in Fig. 11) and performs computations with them (a5
and w5 in Fig. 11). From the ACT/WEI bit-vectors to address
generation, only one cycle is needed. To increase the frequency
and reduce the dynamic power consumption of the accelerator,
computing address and generating partial sums are designed
to be pipelined.

The designed MAC consists of a multiplier and an accumu-
lator, the logic for generating the addresses of partial sums,
and the flag-based full-zero-skipping microarchitecture. The
area of the flag-based full zero skipping (FFZS) module is
37.3% in one MAC, while only 8.7% of one PE. The simu-
lated power consumption of FFZS is 30.7% of one MAC and
9.8% of one PE.

In the microarchitecture of ZeNA [28] which also skips
both zero activations and weights, the skipped zeros are still
fetched from memory to the activation and weight buffers.
Alternatively, in TwoNullHop [31] and our proposed microar-
chitecture, these skipped zeros are not fetched from memory
at all. However, TwoNullHop is inefficient on small networks
(such as R = S = 1 and H = W = 32), because of the
insufficient bandwidth for the partial sums and I/O interface.
Meanwhile, a lot of time is spent on the input image nor-
malization and reordering off chip [31]. In our proposed
microarchitecture, the bitwise AND of ACT bit-vector and
WEI bit-vector is only used as the address offset to find the
corresponding nonzero data. Since the zeros are not fetched

from memory, the latency and power consumption of the accel-
erator are both reduced compared to ZeNA. The advantage
of our proposed microarchitecture is increasingly larger with
increased sparsity of activations and weights, because FFZS
only consumes one cycle to generate the valid address of
nonzero data, while increased cycles are required to obtain
the valid address in ZeNA.

In TensorDash [29] that also performs full zero skipping,
nonzero activation and weight pairs are moved to four MACs
by two types of movement so that four MACs are utilized as
much as possible. However, zero activations and weights are
still fetched into buffers so that the latency and power con-
sumption are significantly increased compared to the proposed
FFZS. Meanwhile, in TensorDash, the 4-deep staging buffer is
used so that the maximum performance of each MAC is lim-
ited to four MAC operations per cycle. Alternatively, the peak
performance of our proposed FFZS reaches up to 32 MAC
operations per cycle. Therefore, the utilization of MACs in
our accelerator is higher compared to TensorDash, especially
in the case of high sparsity.

C. Hierarchical Load Balancing

After full zero skipping, load imbalance is caused by dif-
ferent sparsity among PEs and among MACs. As described
in Section III-A, the overall hardware architecture and com-
putation flow are divided into two levels. The coarse-grained
PE level computes the convolution of input feature maps and
16 filters in parallel to generate 16 output feature map chan-
nels. The fine-grained MAC level computes the convolution
of activations of an input slice and weights of a filter. A
hierarchical load-balancing scheme combining inter-PE load
balance at the PE level and intra-PE load balance at the MAC
level is proposed to solve the load imbalance issue by inte-
grating scheduler-based task allocation and filter reordering in
this accelerator.

The intra-PE load-balancing is to balance loads among the
27 MACs in each PE. For each MAC, due to adopting full
zero skipping, the activation sparsity and weight sparsity are
random. The computation cycles of MACs may vary in a
wide range. The computation time of each PE is determined
by the MAC with the heaviest loading, leading to idle hard-
ware and speed declination. As stated in Section III-B, MACs
are responsible for completing the divided tasks. As shown
in Fig. 12, a scheduler is designed to allocate new tasks to
idle MACs. A look-up table (LUT) in the scheduler records
the task status of the small tasks (“0” indicates “finished” and
“1” indicates “not finished”). Each PE processes 32 channels
(C) × 16 heights (H) × 16 widths (W) of the input slice as
a basic unit. A filter size of D = S = 3 is usually applied
in classical 3D-CNNs. Therefore, the LUT in the scheduler is
designed to contain 16×27 (H = 16 and D × R × S = 27)

bits. Therefore, during the convolution process, the scheduler
is aware of which weight bundle should be convolved with a
specific activation bundle, according to the internal LUT. The
LUT can be initially configured to adapt different convolu-
tions in which the constraint of D × R × S ≤ 27 and D ≤ 3 is
satisfied. Meanwhile, the MAC utilization does not decrease
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Fig. 12. Illustration of the intra-PE load balancing scheme.

because the scheduler can allocate sufficient workload to each
MAC. Once finishing a task, a MAC issues a “Request”
signal. Once ready to receive the partial sums, the partial
sum register issues a “Ready_PRF” signal. “Ready_PRF”
indicates which weights should be selected and sent to the
first-stage arbiter (Arbiter_1). Thus, the task status in the LUT
needs to be performed AND with “Ready_PRF” one by one.
Arbiter_1 generates which weight bundle (ID_WB) needs to
be convolved, while the second-stage arbiter (Arbiter_2) gen-
erates which activation bundle (ID_AB) needs to be convolved.
ID_WB and ID_AB are used to update the LUT by setting
the corresponding task status to “0”, indicating the task is
allocated. Furthermore, by directly arbitrating the “Request”
signal, Arbiter_3 generates which MAC (ID_MAC) to receive
ID_WB and ID_AB. The scheduler informs the partial sum
register to receive the result of ID_MAC. Overall, the schedul-
ing information decides where the inputs of MAC are from and
where the outputs of MAC are transferred. This method is with
low hardware and energy overheads due to the compatibility
with the channel-first dataflow. Only 2.6% of the PE area is
occupied by the scheduler.

The inter-PE load-balancing is to balance loads among PEs.
In the proposed accelerator, the 16 PEs share the same acti-
vations but perform convolution with different filters. The
sparsity difference among filters leads to load imbalance
among PEs. To understand the inter-PE load-balancing, con-
sider the Conv2 layer with 128 filters as an example as shown
in Fig. 13. There is a strong correlation between the sparsity of
a filter and the convolution time. The PEs with sparser filters
have to wait until the PE with the least sparse filter finishes the
task, which degrades the resource utilization of the accelerator.

The proposed inter-PE load balancing addresses this issue
in two steps.

Step_i: All filters of each layer are sorted offline in the
ascending order of their sparsity as shown in Fig. 13. The
adjacent filters after reordering therefore have relatively close
computation time.

Step_ii: Since there are 16 PEs in total, the sorted filters are
divided into multiple groups, each of which contains 16 filters
that are fed into 16 PEs.

In this way, the calculation time is close among the filters
in each group. The computation time of 16 PEs is therefore

Fig. 13. Filter reordering for inter-PE load balancing.

close to each other as well. Especially for the deep convo-
lution layers, the number of filters is larger and the channel
is deeper (e.g., 512 filters and 512 channels in Layer 5, 6,
and 7 of 3D U-Net), compared to the shallow layers. The
calculation time is therefore more proportional to the weight
sparsity in the filters in statistics, thereby achieving even closer
computation time in each group compared to the shallow
layers. In Fig. 13, the thick red line represents the convolu-
tion time of the filters in the original order, while the thick
green stepped line indicates the convolution time of the sorted
filters. The green anti-diagonal area represents the convo-
lution time savings with the inter-PE load balancing. Note
that STICKER [26] requires an external CPU to constantly
rearrange the activations during every convolution process.
However, the substantial overhead of rearranging activations
is not included in the evaluation of STICKER. Alternatively,
our proposed inter-PE load-balancing only requires sorting the
trained filters offline once, resulting in no overhead in the later
convolutions. The power consumption of the sorting is negli-
gible compared to the total power consumption of thousands
of inferences.

V. EXPERIMENTAL RESULTS

In this section, the simulation and measurement results of
the proposed 3D-CNN accelerator Sagitta are presented. The
performance of Sagitta is also compared with the state of
the art.

A. Experiment Setup

Sagitta is fabricated in the UMC 55-nm low-power CMOS
technology and sealed in a LQFP208 package. Three types of
standard cells [low threshold voltage (LVT), regular thresh-
old voltage (RVT), and high threshold voltage (HVT)] and
seven metal layers are used in Sagitta. The physical design is
performed with Cadence Innovus. The total chip area (includ-
ing I/O pads) is 4.2 mm×3.6 mm, while the core area of
Sagitta is 13.5 mm2, both after shrinking. The die micrograph,
test platform, and measurement setup are shown in Fig. 14.
The printed circuit board (PCB) with Sagitta is connected to
an FPGA board (Xilinx Virtex-7 FPGA VC707 Evaluation
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(a)

(c) (d) (e)

(b)

Fig. 14. (a) Diagram of the chip test system. (b) Measurement platform. (c) Summary of the chip measurement results. (d) Micrograph of Sagitta.
(e) Connections between the PCB board with Sagitta, the FMC connector board, and the FPGA evaluation board.

board [53]) via an FPGA mezzanine card (FMC) connec-
tor board. Xilinx Vivado Design Suite is used to program
the FPGA board. The power analyzer Keysight N6705C is
used to measure the real-time power consumption of Sagitta.
The personal computer (PC) loads instructions, weights, and
activations into the double data rate synchronous DRAM
(DDR SDRAM) on the FPGA board. Sagitta fetches instruc-
tions, weights, and activations from the FPGA board and
returns the inference results to FPGA using an asynchronous
FIFO (designed on Sagitta) via FMC. FPGA then sends the
interference results to PC via the universal serial bus (USB).
The signal generator feeds a clock signal to Sagitta as the
system clock for the core.

The two benchmarks that are introduced in the previous sec-
tions are used for the evaluation of Sagitta: 1) C3D classifying
UCF101 and 2) 3D U-Net segmenting BraTS 2020, which are
trained in PyTorch. In particular, the open-source tool Distiller
is used for pruning, quantizing activations and weights to 8-bit
integers (INT8) and partial sums to 32-bit integers (INT32),
and retraining C3D and 3D U-Net to recover the accuracy.

B. Performance Evaluation

The performance, power consumption, and energy efficiency
of Sagitta for running C3D and 3D U-Net at different sup-
ply voltages are shown in Fig. 15. The maximum frequency
is 170 MHz at 1.2 V where the maximum power consump-
tion is 639.4 mW for C3D and 605.3 mW for 3D U-Net.
The ideal peak performance of Sagitta is 146.88 GOPS @
170 MHz without considering data sparsity (0% sparsity of
activations and weights). At the typical operating point of
0.91 V and 100 MHz, with 0% sparsity of activations and
weights, Sagitta achieves a performance of 50 GOPS and an

Fig. 15. Measured frequency and power consumption of Sagitta at differ-
ent supply voltages while running (a) C3D and (b) 3D U-Net. (c) Measured
effective energy efficiency of Sagitta at different supply voltages.

energy efficiency of 0.17 TOPS/W. The minimum operating
voltage of Sagitta is 0.71 V, at which the maximum achiev-
able frequency is 20 MHz. The maximum energy efficiency of
Sagitta is also achieved at 0.71 V and 20 MHz for both bench-
marks, which is 6.1 TOPS/W for C3D and 7.2 TOPS/W for 3D
U-Net.

The area breakdown of the Sagitta core is shown in
Fig. 16(a). The PE array accounts for 69.5% of the total
area. The area of the PE array includes all 16 PEs. The area
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(a) (b)

Fig. 16. Area breakdown of (a) the Sagitta core and (b) one PE.

(a) (b)

Fig. 17. (a) Speedup and (b) normalized (measured) effective energy
efficiency by using the proposed techniques in C3D and 3D U-Net.

breakdown of each PE is shown in Fig. 16(b). The buffers
inside each PE take nearly half of the PE area, which is 2.1×
larger than that of the global buffer. Overall, the on-chip stor-
age, including the global buffer and the buffers inside PEs,
takes approximately half of the total area while the MACs
from all 16 PEs only account for 16.3%.

Sagitta can be configured to disable the three proposed
techniques (TDVD, FFZS, and HLB) to become a baseline
version to evaluate the effectiveness of those techniques in
more details. For the baseline evaluation, TDVD is not used
for activations and pruning is not used for weights, because
the baseline cannot skip zeros in both activations and weights
anyway. The improvement by using the three proposed tech-
niques in C3D and 3D U-Net at 0.91 V and 100 MHz is shown
in Fig. 17. The speedup is obtained by simulating the register
transfer level (RTL) code of Sagitta.

Pruning significantly increases the number of zeros in
weights. After pruning, the average sparsity of weights with
C3D and 3D U-Net is 97.6% and 96.3%, respectively. To eval-
uate the effectiveness of FFZS alone, TDVD is not applied.
Therefore, the average sparsity of activations with C3D and
3D U-Net is still maintained at 54.5% and 89.3%, respec-
tively. Because the proposed HLB cannot be disabled on the
chip, the energy efficiency with FFZS alone is unavailable.
The speedup with FFZS alone can be obtained by simulating
the RTL code of Sagitta. As shown in Fig. 17(a), with the
proposed FFZS alone, the speedup of the 3D-CNN accelera-
tor is 6.5× for C3D and 10.5× for 3D U-Net, compared to
the baseline. Note that the acceleration effect of FFZS is more
significant for 3D U-Net than C3D because the sparsity of acti-
vations in 3D U-Net is dramatically higher than in C3D. Then,
HLB is used together with FFZS. Compared to using FFZS

(a)

(b)

Fig. 18. Speedup and measured effective energy efficiency of each layer in
(a) C3D and (b) 3D U-Net.

alone, the speed of the accelerator is boosted by 1.4× for C3D
and 1.3× for 3D U-Net. Compared to the baseline, the energy
efficiency of the accelerator is enhanced by 9.8× for C3D
and 16.2× for 3D U-Net, by using FFZS and HLB together.
Afterward, TDVD is also applied to enhance the sparsity of
activations. The sparsity of activation is increased to 90.8% in
C3D and 98.6% in 3D U-Net. By combining TDVD, FFZS,
and HLB together, the speed is enhanced by 1.9× for C3D and
1.4× for 3D U-Net, compared to only using FFZS and HLB.
The energy efficiency of the accelerator is further increased by
2.2× for C3D and 1.6× for 3D U-Net, compared to only using
FFZS and HLB. Furthermore, by combining TDVD, FFZS,
and HLB together, the speed is accelerated by 17.2× for C3D
and 19.5× for 3D U-Net, compared to the baseline. The accel-
erator takes only 0.1 s to process C3D and 0.9 s to process
3D U-Net. The energy efficiency of the accelerator is increased
by 21.8× for C3D and 25.9× for 3D U-Net, compared to the
baseline. 3D U-Net is different from C3D in terms of network
architecture, input of spatial volumetric, and learning task of
semantic segmentation. Even so, benefitting from the specified
hardware architecture for 3-D convolution and the proposed
techniques, the chip test results still show that the proposed
work enhances the energy efficiency of 3D U-Net significantly.
This validates the generalization capability of the proposed
hardware architecture and techniques on 3D-CNN. The com-
parisons between the baseline and the optimized version of
Sagitta for running C3D from 20 to 170 MHz are summarized
in Table I.
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TABLE I
COMPARISONS BETWEEN THE BASELINE AND THE OPTIMIZED VERSION OF SAGITTA FOR RUNNING C3D FROM 20 TO 170 MHZ

TABLE II
COMPARISONS OF SAGITTA WITH THE STATE OF THE ART

The speedup and effective energy efficiency of each layer in
C3D and 3D U-Net are demonstrated in Fig. 18. The speedup
and energy efficiency vary dramatically among layers. It is
due to the fact that apart from the sparsity of activations
and weights, the size of input feature maps and filters is the
key parameter that influences the performance of the chip. In
detail, each PE processes 32 channels×16 heights×16 widths
as the basic unit. However, the first convolution layer in C3D
has only three channels, leading to an 8.7× lower active MAC
rate compared to the average active MAC rate of the whole
network. Meanwhile, the seventh convolution layer in C3D
has only 7 heights×7 widths, resulting in a 2.5× lower active
MAC rate compared to the average active MAC rate of the
whole network. As the sparsity grows, the read/write collisions

in the register files of activations, weights, and partial sums
tend to be more severe and the overhead of flag, including
storage and movement, becomes heavier. For these two rea-
sons, the active MAC rate decreases, limiting the peak energy
efficiency. To alleviate the impact of the second factor, the
amount of register files inside each PE can be increased to
enhance the performance. To double the peak performance of
the accelerator, the total size of register files in the PEs needs
to be increased by 2.3×, which would lead to ∼44.5% increase
of the total chip area.

C. Comparisons With the State of the Art

The comparisons of the proposed 3D-CNN accelerator
Sagitta with the state-of-the-art 2D-CNN accelerators are
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detailed in Table II. For Sagitta, the sparsity of activation and
weight is 90.8% and 97.6%, respectively, for C3D, and 98.6%
and 96.3%, respectively, for 3D U-Net. According to the layout
shrinking rules of TSMC and UMC (for both 55 and 28 nm),
the area is reduced by 0.81× (0.92) with the technology scaled
from 65 to 55 nm, and the area is increased by 4× (22) with the
technology scaled from 28 to 55 nm. The supply voltage is typ-
ically maintained with the technology scaled from 65 to 55 nm,
and increased from 1.0 to 1.2 V with the technology scaled
from 28 to 55 nm. With the area and supply voltage scaling,
the energy efficiency of TwoNullHop, STICKER [27], and 65-
nm 8-bit fixed-point SNAP can be approximately scaled to the
energy efficiency in 55-nm technology as shown in the last
row of Table II. The energy efficiency scaling of Samsung
Butterfly [54] and MediaTek [52] is inaccurate and thus not
given because their technologies are far more advanced than
55 nm. Even when scaled by only 2× (the area scaling fac-
tor is 4 from 28 to 55 nm and the supply voltage scaling
is not even considered), Sagitta has already outperformed
Samsung Butterfly [54] and MediaTek [52] running real
networks in terms of energy efficiency. While running C3D,
Sagitta improves the effective energy efficiency by 9.3×, 4.2×,
2.1×, and 1.1×, compared with [27], 65-nm 8-bit fixed-point
SNAP [30], TwoNullHop [31], and STICKER [26], respec-
tively. While running 3D U-Net, Sagitta improves the effective
energy efficiency by 11×, 4.9×, 2.6×, and 1.3×, compared
with [27], 65-nm 8-bit fixed-point SNAP, TwoNullHop, and
STICKER, respectively. One important reason why Sagitta
achieves higher energy efficiency compared to these 2D-CNN
accelerators, is that the on-chip weights and activations are
efficiently reused over the dimension T and the dimension D,
respectively.

The state-of-the-art 3D-CNN accelerators are also compared
with Sagitta in Table II. To the best of our knowledge, Sagitta
is the first taped-out 3D-CNN accelerator. For running C3D,
compared to [35] operating at 200 MHz and [37] operating
at 150 MHz, Sagitta achieves 24.1× and 379.6× energy effi-
ciency improvement, respectively, at 100 MHz. In summary,
Sagitta outperforms the state-of-the-art 2D-CNN accelerators
and 3D-CNN accelerators in terms of energy efficiency.

VI. CONCLUSION

In this article, Sagitta, an energy-efficient real-time 3D-CNN
accelerator deeply exploiting the data sparsity, is proposed. To
benefit from the sparsity of both activations and weights, a full-
zero-skipping microarchitecture is proposed to skip both the
zero activations and weights for speedup and energy savings.
A hierarchical load-balancing scheme is employed to mitigate
the load imbalance among and inside PEs after zero skipping.
To amplify the effect of zero skipping, a threshold differential
value dropout method is proposed to increase the sparsity of
activations in the convolution layers. All the proposed tech-
niques are enabled on the system architecture with specialized
computation flow. The proposed 3D-CNN accelerator is fab-
ricated in the UMC 55-nm low-power CMOS technology.
Benchmarked with the C3D network classifying the UCF101
data set and 3D U-Net segmenting the BraTS 2020 data set, the

proposed accelerator achieves an effective energy efficiency
of 3.8 TOPS/W and 4.5 TOPS/W, and a latency of 0.1 and
0.9 s, respectively, with all the optimization techniques while
running at 100 MHz with 0.91-V supply voltage. Compared to
the state-of-the-art 3D-CNN and 2D-CNN accelerators, Sagitta
enhances the energy efficiency by up to 379.6× and 11×,
respectively, thereby providing an attractive option for edge
computing.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Int. Conf. Neural Inf.
Process. Syst., vol. 25, Dec. 2012, pp. 1097–1105.

[2] Y. Kim, “Convolutional neural networks for sentence classifica-
tion,” in Proc. Conf. Empir. Methods Nat. Lang. Process., Oct. 2014,
pp. 1746–1751.

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 580–587.

[4] Z. Liu, H. Tang, Y. Lin, and S. Han, “Point-voxel CNN for efficient 3D
deep learning,” in Proc. Int. Conf. Neural Inf. Process. Syst., vol. 32,
Dec. 2019, pp. 965–975.

[5] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
F.-F. Li, “Large-scale video classification with convolutional neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 1725–1732.

[6] Y. Zhang, L. Shi, Y. Wu, K. Cheng, J. Cheng, and H. Lu,
“Gesture recognition based on deep deformable 3D convolutional neural
networks,” Pattern Recognit., vol. 107, Nov. 2020, Art. no. 107416.

[7] Z. Wang, S. Yue, and C. Song, “Video-based air quality measurement
with dual-channel 3-D convolutional network,” IEEE Internet Things J.,
vol. 8, no. 18, pp. 14372–14384, Sep. 2021.

[8] G. D. de Dinechin and A. Paljic, “Automatic generation of interactive
3D characters and scenes for virtual reality from a single-viewpoint
360-degree video,” in Proc. IEEE Conf. Virtual Reality 3D User
Interfaces, Mar. 2019, pp. 908–909.

[9] G. Kim et al., “A 1.22 TOPS and 1.52 mW/MHz augmented real-
ity multicore processor with neural network NoC for HMD appli-
cations,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 113–124,
Jan. 2015.

[10] G. P. Meyer, A. Laddha, E. Kee, C. Vallespi-Gonzalez, and
C. K. Wellington, “LaserNet: An efficient probabilistic 3D object detec-
tor for autonomous driving,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2019, pp. 12677–12686.

[11] Z. Liang et al., “Stereo matching using multi-level cost volume and
multi-scale feature constancy,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 43, no. 1, pp. 300–315, Jan. 2021.

[12] A. R. Ozcan and S. Erturk, “Seizure prediction in scalp EEG using 3D
convolutional neural networks with an image-based approach,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 11, pp. 2284–2293,
Nov. 2019.

[13] D. Botina-Monsalve, Y. Benezeth, and J. Miteran, “RTrPPG: An
ultra light 3DCNN for real-time remote photoplethysmography,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2022,
pp. 2146–2154.

[14] L. Kastner, V. C. Frasineanu, and J. Lambrecht, “A 3D-deep-learning-
based augmented reality calibration method for robotic environments
using depth sensor data,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2020, pp. 1135–1141.

[15] S. P. Singh, L. Wang, S. Gupta, H. Goli, P. Padmanabhan, and B. Gulyás,
“3D deep learning on medical images: A review,” Sensors, vol. 20,
no. 18, p. 5097, Sep. 2020.

[16] D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural
network for real-time object recognition,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Sep. 2015, pp. 922–928.
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