
Adjustable Multi-Stream Block-Wise Farthest Point
Sampling Acceleration in Point Cloud Analysis

Journal: IEEE Transactions on Circuits and Systems II: Express Briefs

Manuscript ID TCAS-II-20241-2023

Manuscript Type: Regular Paper - Letters

Date Submitted by the
Author: 05-Dec-2023

Complete List of Authors: Jiao, Hailong; Peking University Shenzhen Graduate School
Zhou, Changchun; Peking University Shenzhen Graduate School
Fu, Yuzhe; Peking University Shenzhen Graduate School
Ma, Yanzhe; Peking University Shenzhen Graduate School
Han, Eryi; Reconova Technologies Co Ltd
He, Yifan; Reconova Technologies Co Ltd

EDICS:

DCS110 - Digital ASICs < Digital Circuits and Systems (and VLSI),
DCS160A5 - Low power architectures < DCS160 - Low power digital
systems < Digital Circuits and Systems (and VLSI), DCS230 - Digital
VLSI < Digital Circuits and Systems (and VLSI), DCS230B0 - VLSI digital
circuits, designs and implementations < DCS230 - Digital VLSI < Digital
Circuits and Systems (and VLSI)

TCAS-II Subject
Category
Please select

the subject category that
most closely fits with the

scope of your manuscript:

Digital Circuits and Systems and VLSI

IEEE Transactions on Circuits and Systems II: Express Briefs

1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Adjustable Multi-Stream Block-Wise Farthest

Point Sampling Acceleration in Point Cloud Analysis

Changchun Zhou*, Yuzhe Fu*, Yanzhe Ma, Eryi Han, Yifan He, Member, IEEE, and Hailong Jiao, Member, IEEE

Abstract—Point cloud is increasingly used in a variety of

applications. Farthest Point Sampling (FPS) is typically employed

for down-sampling to reduce the size of point cloud and enhance

the representational capability by preserving contour points in

point cloud analysis. However, due to low parallelism and high

computational complexity, high energy consumption and long

latency are caused, which becomes a bottleneck of hardware

acceleration. In this brief, we propose an adjustable multi-stream

block-wise FPS algorithm, adjusted by four configurable

parameters, according to hardware and accuracy requirements. A

unified hardware architecture with one parameter is designed to

implement the adjustable multi-stream block-wise FPS algorithm.

Furthermore, we present a rapid searching algorithm to select the

optimal configuration of the five parameters. Designed in an

industrial 28-nm CMOS technology, the proposed hardware

architecture achieves a latency of 0.005 (1.401) ms and a frame

energy consumption of 0.09 (27.265) µJ/frame for 1 k (24 k) input

points at 200 MHz and 0.9 V supply voltage. Compared to the state

of the art, the proposed hardware architecture reduces the

latency by up to 99.9%, saves the energy consumption by up to

99.5%, and improves the network accuracy by up to 9.34%.

Index Terms—Point cloud neural networks, mapping, parallelism,

FPS, acceleration framework, energy consumption, network

accuracy, hardware architecture.

I. INTRODUCTION

OINT cloud has recently gained popularity as a data

source in a variety of fields, ranging from robotics [1],

[2] and autonomous driving [3], [4] to augmented reality

(AR) [5]. Farthest point sampling (FPS) algorithm is widely

employed in point cloud neural networks (PNNs) [6]−[14],

preserving shape and structural information, and significantly

reducing the input point cloud size and computational

complexity of PNNs. During FPS, the point which is farthest

from the output point set is added to the output point set and

then the process is iterated [16]. Therefore, FPS is inherently

sequential with a long latency of O(N²) cycles and a high

computational complexity of O(N²), where N represents the

number of points in the point cloud [16]. Furthermore, FPS

involves a substantial number of memory accesses of O(N²).

Meanwhile, the grain of memory access in FPS is small, just the

coordinates of one point. Therefore, FPS results in low memory

access efficiency. These make FPS a bottleneck in hardware

acceleration for point cloud analysis. Therefore, an FPS

acceleration framework that supports parallel computing with

low computational complexity, low latency, and low memory

access overhead, is highly desirable.

To solve these issues, an adjustable multi-stream block-wise

FPS algorithm is proposed to reduce computational complexity

and maintain accuracy. A unified hardware architecture is

developed to implement the proposed adjustable multi-stream

block-wise FPS algorithm. A rapid searching algorithm is

proposed to select the best algorithm and hardware

configurations with specified priority between accuracy and

energy consumption. The proposed FPS acceleration

framework improves up to 9.34% network accuracy and

reduces up to 99.5% energy consumption and 99.9% latency per

frame, compared to the state of the art. Designed in the TSMC

28-nm CMOS technology, the proposed hardware architecture

achieves a latency of 0.005 (1.401) ms and an energy

consumption of 0.09 (27.265) µJ/frame for 1 k (24 k) input

points at 200 MHz and 0.9 V supply voltage.

II. BACKGROUND AND RELATED WORKS

FPS acceleration has been investigated sporadically in recent

years. An adjustable FPS algorithm is introduced in [16]. Point

cloud is segmented into multiple slices, based on the spatial

distribution. Similarly, the local FPS is then performed on each

segment. However, if the data rearrangement mismatches the

spatial distribution of point cloud, the network accuracy is

significantly degraded. Furthermore, rearranging the point

cloud data before processing leads to extra operations. [19]

employs distribution-aware FPS. A spatial grid is used to group

point clouds and accelerate FPS by skipping unnecessary

computations based on a distance threshold, thereby

maintaining accuracy. [20] employs a k-d tree to divide point

clouds into buckets and performs intra-bucket FPS. [20] skips

memory access of these buckets which are far from the last

farthest point. However, both [19] and [20] suffer from serial

FPS operations, thereby limiting computation parallelism and

introducing long latency.

[15] introduces a block-wise FPS algorithm to reduce latency

with two principal steps: prediction and sampling. Two key

parameters, namely the sparsity coefficient (S) and the number

of blocks (B), are employed. In Fig. 1, with S = 16 and B = 8,

the prediction step begins by reducing the input points to a 16×

sparser set. FPS is then performed on this sparse set, following

a count of points per block, which is then scaled up by a factor

P

This work was supported in part by the National Natural Science Foundation

of China 62074005. (*Changchun Zhou and Yuzhe Fu contributed equally to

this work.) (Corresponding author: Hailong Jiao.)

Changchun Zhou, Yuzhe Fu, Yanzhe Ma, and Hailong Jiao are with the

School of Electronic and Computer Engineering, Shenzhen Graduate School,

Peking University, Shenzhen, 518055, China (e-mail:

jiaohailong@pku.edu.cn). Eryi Han and Yifan He are with Reconova

Technologies Co., Ltd., Xiamen, 361015, China.

Page 1 of 10 IEEE Transactions on Circuits and Systems II: Express Briefs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

of 16 (S) to estimate the number of points in each block. In the

sampling phase, the input points are initially divided into 8 (B)

blocks. A block-wise FPS, guided by the earlier predicted

counts, is conducted on each block. The results of each block

are aggregated to form the final sample output. An increase in

the values of S and B tends to reduce the complexity and latency

of FPS, yet at the cost of accuracy loss. In detail, a higher S

leads to the dropout of critical contour points in the prediction

step, thereby causing prediction distortion. Similarly, a larger B

results in a smaller number of points in each block, which

causes a substantial discrepancy between the predicted number

and the actual number of points.

Fig. 1. The existing block-wise FPS algorithm in [15].

III. ADJUSTABLE MULTI-STREAM BLOCK-WISE FPS

ACCELERATION FRAMEWORK

A. Adjustable Multi-Stream Block-Wise FPS (AMB-FPS)

The existing block-wise FPS in [15] suffers from large

network accuracy loss and limited optimization space of

computational complexity and parallelism. To address these

challenges, an adjustable multi-stream block-wise FPS

algorithm (AMB-FPS) is proposed to further improve

parallelism, reduce complexity, and maintain accuracy. AMB-

FPS is composed of a multi-stream prediction stage and a multi-

stream sampling stage, as shown in Fig. 2.

Fig. 2. Illustration of the mechanism of the proposed AMB-FPS.

Compared with [15], AMB-FPS employs three additional key

parameters, namely the number of prediction streams (PS), the

number of cubes (C), and the number of block streams (BS).

The sparsity coefficient (S), PS, and C are used in the multi-

stream prediction stage. C and BS are used in the multi-stream

sampling stage.

Algorithm 1 outlines the overall process of AMB-FPS.

During the multi-stream prediction stage, PS distinct sparsity

strategies are adopted to reduce the input points to PS small

independent sparse point sets. FPS is performed on each set.

Afterwards, the remained points of each set are partitioned into

C cubes. The points are counted for each cube. The counted

numbers in the same cube of PS sets are accumulated and then

multiplied by S/PS to obtain the final predicted number of each

cube in the original input point cloud. In the multi-stream

sampling stage, the input point cloud is spatially partitioned into

C cubes. Each cube is further uniformly sampled into BS blocks

by adopting BS distinct sparsity strategies. The predicted

number of each cube obtained in the first stage is also divided

by BS. FPS is performed on each block. The remained points of

all blocks are aggregated to obtain the final sampled points. An

example of AMB-FPS configured with C = 8, S = 16, and PS =

BS = 4 is illustrated in Fig. 2. The number of points before and

after FPS is 1024 and 512, respectively. In the prediction stage,

the introduction of PS aims to mitigate the imprecision caused

by the loss of key points due to a larger S. C preserves the global

features. BS improves the computational parallelism and

reduces the load imbalance across C cubes. Therefore,

reasonable PS and BS are beneficial for improving accuracy and

reducing latency, respectively. The effect of the three new

introduced parameters PS, C, and BS is also validated by

experiments in Fig. 4 and discussed in detail in Section IV-A.

However, a large PS causes excessive computation during the

prediction stage, while an exaggerated BS makes FPS resemble

random sampling. To address these challenges, in Section III-

C, a rapid searching algorithm is proposed to select a reasonable

configuration (C, S, PS, BS) for AMB-FPS.

B. Unified Hardware Architecture (UHA)

The unified hardware architecture of the proposed AMB-FPS

acceleration framework is depicted in Fig. 3. UHA consists of a

sampling module, a partition module, a memory module, a

S
p

a
rs

e

1/S
64

3 2

4 7

48 32

64 112 B
lo

c
k
 F

P
S36 80

180 216

48 32

64 112

Input Point

Cloud

Sparse Set

(SparSet)
Predicted Numbers

(PredNum)

Set

F
P

S
,

C
u

b
e

 C
o

u
n

t

Partition into B Blocks (B=8)

×S

1024

512

SamplingPrediction

216 112

A
g

g
re

g
a

te

x B Blocks (B=8)

Sampled

Blocks

Output Point

Cloud

S=16

S=16

S
p

a
rs

e
 (

S
=

1
6

) 1/S

1/S 64

64
3 2

4 7

1 4

6 5

A
c
c
u

m
u

la
te

28 52

80 96

B
lo

c
k
 F

P
S

36 80

180 216

54

54

In
tr

a
-C

u
b

e

M
u

lt
i-

B
lo

c
k 24

24

A
g

g
re

g
a

te

28 52

80 96

x C Cubes

Input Points (I)

Sparse Sets (SparSet) Sampled Numbers (SampNum)

P
re

d
ic

te
d

 N
u

m
b

e
rs

(P
re

d
N

u
m

)

Intra-Cube Blocks (IntrBlo) Sampled Blocks (SampBlo)

O
u

tp
u

t
P

o
in

ts
 (

O
)

M
u

lt
i-

S
tr

e
a

m
 P

re
d

ic
ti
o

n

(P
S

=
 4

)

Set1

Set4×
P

S

F
P

S
,

C
u

b
e

 C
o

u
n

t

P
a

rt
it
io

n
 i
n

to

C
C

u
b

e
s

(C
=

8
)

M
u

lt
i-

S
tr

e
a

m

S
a

m
p

lin
g

 (
B

S
=

 4
)

×
S

PS

···

B1

B4

···

1024

···

×
B

S

···

512

96/BS

Partitioned

Points (P)

S=16

Page 2 of 10IEEE Transactions on Circuits and Systems II: Express Briefs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

control module, and an interface module. The sampling module

includes M cores, each of which can be configured to support

different numbers of input points and output points. Each core

performs the FPS of each block in Fig. 2. The partition module

mainly consists of 16 comparators, counters, and buffers. The

partition module is responsible for partitioning coordinates of

point cloud into multiple blocks and performing sparsity

strategies, providing inputs for the sampling module. The

memory module is composed of M/2 static random-access

memory (SRAM) banks, each bank housing N/M/2 (N is the

number of input points) 256-bit words. An instruction set

architecture (ISA) is designed for the off-chip host to control

UHA. During neural network inference, the off-chip host sends

a set of instructions to the control module. The control module

decodes the instruction and then controls the execution of the

sampling module, the partition module, and the allocation of the

memory module. In the hardware architecture, the number of

cores M is configured based on the number of blocks of AMB-

FPS in Fig. 2. Then, the numbers of SRAM banks and SRAM

words are configured to M/2 and N/M/2, respectively. Therefore,

a hardware implementation that aligns with the proposed AMB-

FPS is generated.

Fig. 3. The architecture of the proposed UHA.

C. Rapid Searching Algorithm (RSA)

All the configurations of AMB-FPS and UHA are designed

for two goals: maintaining network accuracy and minimizing

hardware energy consumption. However, to determine the

optimal configuration, all the configurations need to be

evaluated. For each configuration, replacing the original FPS

by the configured AMB-FPS, retraining the network, and then

evaluating the hardware are required. The entire process is

significantly time-consuming and thus impractical. Therefore,

a rapid searching algorithm (RSA) is proposed as shown in

Algorithm 2, which rapidly generates the optimal configuration

of AMB-FPS and hardware architecture for specified accuracy

and hardware requirements.

In Algorithm 2, Loss is introduced as a comprehensive

evaluation index of AMB-FPS and UHA, which combines the

predicted algorithm accuracy (Acc) and hardware energy

consumption (E) as shown in (5). A lower Loss value indicates

superior AMB-FPS performance. The weight w is manually

controlled to prioritize either accuracy or hardware energy

consumption for Loss. In (4), Acc is the sum of mean absolute

error (MAE) and an improved Mahalanobis distance (IMD).

MAE and IMD are explained in Section IV-A. In (1), L is the

latency of the two stages in AMB-FPS. Therefore, L is affected

by the configurations of the proposed AMB-FPS and hardware

architecture. In (2), Power is derived from the hardware post-

synthesis simulation by linear fitting.

 𝐿 = (𝑅 −
𝑅2

2
) × (𝑐𝑒𝑖𝑙 (

𝑃𝑆

𝑀
) × (

𝑁

𝑆
)

2
+ 𝑐𝑒𝑖𝑙(

𝐶×𝐵𝑆

𝑀
) × (

𝑁

𝐶 ×𝐵𝑆
)

2
). (1)

 𝑃𝑜𝑤𝑒𝑟 = 2.9 + 1.1 × 𝑀. (2)

 𝐸 = 𝑃𝑜𝑤𝑒𝑟 × 𝐿. (3)

 𝐴𝑐𝑐 = 𝑁𝑜𝑟𝑚(𝐼𝑀𝐷) + 𝑁𝑜𝑟𝑚(𝑀𝐴𝐸). (4)

 𝐿𝑜𝑠𝑠 = 𝑤 × 𝐴𝑐𝑐 + (1 − 𝑤) × 𝐸. (5)

In Algorithm 2, for each configuration (C, S, PS, BS, M), Acc

and E are computed. Loss for each configuration is calculated

according to (5) and is added to Configl. Subsequently, the

configuration in Configl with the smallest Loss is selected as the

best configuration for AMB-FPS and hardware architecture.

IV. EXPERIMENTAL RESULTS

A. Analysis of Software and Hardware Implementations

To evaluate the accuracy of the proposed AMB-FPS, the

PointNeXt-S network classifying ModelNet40 [17] dataset,

PointNet++ [6] classifying ModelNet40, and PointNeXt-S

segmenting S3DIS [21] dataset, are trained in PyTorch as the

benchmarks. The open-source tool Distiller [18] is used for

pruning, quantization to 8-bit data width, and retraining to

recover the accuracy. UHA is designed in the TSMC 28-nm

HPC+ CMOS technology. Cadence Genus is used for logic

synthesis at 200 MHz and 0.9 V supply voltage. To evaluate the

power consumption, Cadence NC-Sim is used to obtain the

realistic switching activity of the hardware, in the form of TCF

(toggle count format) files. The TCF files are then used for

power evaluation with Cadence Genus.

The MAE and proposed IMD are used to evaluate the

similarity of AMB-FPS and the original FPS. MAE represents

the average of the absolute differences between two point

clouds. MAE is

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝐴𝑖 − 𝐵𝑖|𝑛

1 , (6)

where n is the total number of points in point clouds A and B. A

smaller MAE indicates a higher similarity between the two point

In
st

r.

M
e
m

.

Center

Controller

M
e
m

o
ry

 C
o
n
tr

o
lle

r

Bank

[M/2-1]

FPS

FPS

Memory Module

Control Module

In
te

rf
a

c
e

 M
o

d
u

le

 Sampling Module

Bank[0]

Bank[1]

Bank[2]

Euclidean distance calculationEDC

Output Sampled Coord.

Min

MaxDist.

Max

Core #0

Core #1

Core #M-1

Partition Module

xL<xi<xH

M
/2

N/M/2

Euclidean Dist.
Calculation

Coord. Buffer

Output Updated Dist.

Update

MaxCoord.

Update Sampled Coord.

En

Write Back

Output

Coord.

Block

Idx

Dist. Buffer

S
ch

e
d
u

le
r

yL<yi<yH

zL<zi<zH1

2

...

k

(xL, xH) (yL, yH) (zL, zH)

Block Table

(xL, xH) (yL, yH) (zL, zH)

...

(xL, xH) (yL, yH) (zL, zH)

En
1

2

...

i

(x0, y0)

Input Coord.

(x1, y1)

...

(xi, yi)

Page 3 of 10 IEEE Transactions on Circuits and Systems II: Express Briefs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

clouds. Improved Mahalanobis Distance (IMD) is proposed to

reflect the difference between two point clouds. The mean value

of each dimension for the two point clouds (P1 and P2) is

computed to derive two representative center points, which are

u1 and u2. Subsequently, the covariance matrices of the two

point clouds, namely S1 and S2, are calculated and accumulated

to obtain an overall covariance matrix. The IMD between the

point clouds is then computed based on

 𝐼𝑀𝐷(𝑃1, 𝑃2) = √(𝑢1 − 𝑢2)𝑇(𝑆1 + 𝑆2)−1(𝑢1 − 𝑢2) . (7)

A larger IMD value indicates a larger difference between the

two point clouds. Compared to MAE focusing on local details,

IMD prioritizes the global shape of point cloud. The impact of

diverse configurations of AMB-FPS on Acc and E are depicted

in Fig. 4. The output point cloud of the original FPS is employed

as a baseline for computing Acc. A larger C causes a larger error

in the prediction stage due to the linear decrease in the number

of points in each cube. Consequently, Acc becomes worse, as

shown in Fig. 4a. However, the reduction in points per cube

induces a quadratic complexity reduction in the FPS of each

cube, thus leading to a decline in E. As S increases, the sparse

step is more aggressive in the prediction stage, which leads to

the deterioration of Acc, as shown in Fig. 4b. In terms of E, an

increase in S leads to fewer points performed by FPS for each

set during the prediction stage in Fig. 2, thus contributing to a

reduced prediction latency and resulting in a smaller E.

Fig. 4. The impact of different configurations [C, S, PS, BS] of AMB-FPS on

Acc and E. (a) The numbers of cubes (C). (b) The sparse coefficient (S). (c) The

numbers of prediction streams (PS). (d) The number of block streams (BS).

The parameter PS serves as a multi-stream prediction

mechanism designed to compensate for the accuracy loss

caused by aggressive S. A large PS causes excessive

computation and worse E during the prediction stage while

optimizing Acc in (4), as PS  8 (M = 8) in this case, as shown

in Fig. 4c. BS is used in the multi-stream sampling stage, which

reduces hardware complexity by reducing the number of points

in each block. Therefore, as shown in Fig. 4d, a larger BS leads

to a smaller E. However, BS cannot be set to be excessively

large, which reduces the number of points per block during the

sampling stage and makes FPS resemble random sampling.

Meanwhile, if only BS is employed (such as [C, S, PS, BS] = [1,

0, 0, 16] for AMB-FPS), the global features of point cloud are

lost after uniformly sampling into BS blocks, leading to a

significant network accuracy loss (>2%). Therefore, the

introduction of other parameters [C, S, PS] is necessary to

alleviate the impact of BS. The partition of input point cloud

into C cubes preserves the global features. Meanwhile, S and

PS enable the accurate prediction of the sampled number in

each cube.

B. Comparisons with the State of the Art

To verify the effectiveness of the proposed AMB-FPS

acceleration framework, we perform a comparative analysis

with the original FPS and PNNPU [15]. For a comprehensive

comparison, algorithm accuracy indicators (such as MAE, IMD,

network accuracy, and mean Intersection-over-Union (mIoU))

and hardware comparative indicators (such as L and E) are

employed. As benchmarks, PointNeXt-S and PointNet++

networks are used to classify ModeNet40 dataset, which is

presented in Table I. To evaluate the efficiency of AMB-FPS on

a large-scale dataset, PointNeXt-S is used to segment S3DIS

dataset, which is presented in Table II.

In Tables I and II, AMB-FPS-v0 represents the hardware-

prioritized version, which mainly optimizes L and E with less

attention on MAE and IMD. AMB-FPS-v1 is the accuracy-

prioritized version, focusing on improvements of MAE and

IMD yet with hardware performance loss. In Table I, compared

to the original FPS, AMB-FPS-v0 (AMB-FPS-v1) reduces L

and E by 99.87% (99.8%) and 99.43% (98.5%), respectively,

while ensuring negligible network accuracy loss (< 0.4%).

Compared with PNNPU, AMB-FPS-v0 (AMB-FPS-v1)

reduces MAE, IMD, L, and E by 40.09% (72.62%), 24.3%

(68.05%), 83.87% (74.19%), and 76.06% (37.2%), respectively.

In terms of network accuracy, AMB-FPS-v0 and AMB-FPS-v1

surpass PNNPU by 0.73% (0.08%) and 1.05% (0.24%) for

PointNeXt-S (PointNet++), respectively. The dataset for both

PointNet++ and PointNeXt-S is ModelNet40, and the sampling

rate of both networks is 1/2. Therefore, the latency, power, and

energy consumption are the same for running PointNet++ and

PointNeXt-S. In Table II, compared to the original FPS, AMB-

FPS-v0 (AMB-FPS-v1) reduces L and E by 99.9% (99.8%) and

99.5% (98.57%), respectively, with no accuracy loss in FP32

and < 1.9% accuracy loss in 8-bit quantization. Compared with

PNNPU, AMB-FPS-v0 (AMB-FPS-v1) reduces MAE, IMD, L,

and E by 34.92% (51.06%), 59.18% (68.45%), 86.72% (75%),

and 79% (40.2%), respectively. In terms of mIoU of PointNeXt-

S, AMB-FPS-v0 and AMB-FPS-v1 outperform PNNPU by

9.34% (2.76%) and 9.33% (2.91%) in FP32 (8-bit quantization),

respectively. In [20], QuickFPS achieves a sampling time of 0.1

ms (3 ms) for 1 k (24 k) points at 1 GHz frequency, with

estimated 100,000 (3,000,000) cycles and energy consumption

of 18.6 µJ (4261.5 µJ). In Table I (Table II), AMB-FPS-v0

consumes a latency of 0.005 ms (1.401 ms) and energy of 0.09

µJ (27.265 µJ) at 200 MHz, indicating 960 (280,151) cycles.

Compared to QuickFPS, the proposed AMB-FPS-v0 reduces

(a) (b)

(c) (d)

Page 4 of 10IEEE Transactions on Circuits and Systems II: Express Briefs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

the number of cycles by 99.04% (90.66%) and saves energy by

99.52% (99.36%) for sampling 1 k (24 k) points.

TABLE I

PERFORMANCE COMPARISONS ON POINTNEXT-S AND POINTNET++

CLASSIFYING MODELNET40

 Original

FPS

PNNPU [15]

VLSI 2021
AMB-FPS-v0 AMB-FPS-v1

w : (1-w) (/105) N/A N/A 1:10 10:1

[C, S, PS, BS] N/A [16, 16, 1, 1] [4, 32, 2, 16] [2, 32, 16, 15]

Core (M) 1 16 64 30

Area (mm2) 0.02 0.4* 1.63 0.76

SRAM (KB) 8 8 8 8

MAE 0 7.246 4.341 1.984

IMD 0 0.169 0.128 0.054

PointNeXt-S

Accuracy (%) 8-bit
91.45 90.36 91.09 91.41

PointNet++

Accuracy (%) 8-bit
91.53 91.25 91.33 91.49

L (ms) 3.932 0.031* 0.005 0.008

Power (mW) 4 12.25* 18.74 28.7

E (µJ) 15.729 0.376* 0.090 0.236

*The simulation results of the re-implemented FPS hardware.

TABLE II

PERFORMANCE COMPARISONS ON POINTNEXT-S SEGMENTING S3DIS

 Original

FPS

PNNPU [15]

VLSI 2021
AMB-FPS-v0 AMB-FPS-v1

w : (1-w) (/108) N/A N/A 1:10 10:1

[C, S, PS, BS] N/A [16, 16, 1, 1] [32, 32, 8, 4] [2, 32, 16, 16]

Core (M) 1 16 128 32

Area (mm2) 0.02 0.4* 3.27 0.81

SRAM (KB) 192 192 192 192

MAE 0 2.652 1.726 1.298

IMD 0 0.485 0.198 0.153

mIoU (%) FP32 62.51 53.79 63.13 63.12

mIoU (%) 8-bit 56.83 52.23 54.99 55.14

L (ms) 1350 10.547* 1.401 2.637

Power (mW) 4 12.25* 18.74 28.7

E (µJ) 5400 129.2* 27.265 77.256

*The simulation results of the re-implemented FPS hardware.

V. CONCLUSIONS

In this brief, an algorithm-hardware co-designed FPS

acceleration framework is proposed to reduce energy

consumption while maintaining accuracy. To improve

parallelism and reduce computational complexity, an adjustable

multi-stream block-wise FPS algorithm is proposed. A unified

hardware architecture for the adjustable multi-stream block-

wise FPS algorithm is designed. A rapid searching algorithm is

developed to select the optimal configuration of the adjustable

multi-stream block-wise FPS algorithm and the unified

hardware architecture under specified priority between

accuracy and energy savings. Benchmarked with PointNeXt-S

and PointNet++ networks classifying ModelNet40 and

PointNeXt-S network segmenting S3DIS, and designed in a 28-

nm CMOS technology, the proposed FPS acceleration

framework achieves a latency of 0.005 (1.401) ms and a frame

energy consumption of 0.09 (27.265) µJ/frame for 1 k (24 k)

input points at 200 MHz and 0.9 V supply voltage. Compared

to the state of the art, the proposed FPS acceleration framework

reduces up to 99.9% latency, saves up to 99.5% energy

consumption, and improves up to 9.34% network accuracy.

REFERENCES

[1] M. Wen, Y. Dai, T. Chen, C. Zhao, J. Zhang, and D. Wang, “A robust

sidewalk navigation method for mobile robots based on sparse semantic

point cloud,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2022,
pp. 7841-7846.

[2] Y. Cheng, J. Su, M. Jiang, and Y. Liu, “A novel radar point cloud

generation method for robot environment perception,” IEEE Trans. Robot.,
vol. 38, no. 6, pp. 3754-3773, Dec. 2022.

[3] Y. Li et al., “Deep learning for LiDAR point clouds in autonomous driving:

a review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 8, pp. 3412-
3432, Aug. 2021.

[4] R. Abbasi, A. K. Bashir, H. J. Alyamani, F. Amin, J. Doh, and J. Chen,

“Lidar point cloud compression, processing and learning for autonomous
driving,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 1, pp. 962-979, Jan.

2023.

[5] L. Kästner, V. C. Frasineanu, and J. Lambrecht, “A 3d-deep-learning-based

augmented reality calibration method for robotic environments using depth

sensor data,” in Proc. Int. Conf. Robot. Automat. (ICRA), 2020, pp. 1135-

1141.
[6] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical

feature learning on point sets in a metric space,” in Proc. Adv. Neural Inf.
Process. Syst. (NeurIPS), 2017, pp. 5105-5114.

[7] X. Ma, C. Qin, H. You, H. Ran, and Y. Fu, “Rethinking network design

and local geometry in point cloud: A simple residual MLP framework,” in
Proc. Int. Conf. Learn. Represent. (ICLR), Apr. 2022.

[8] G. Qian et al., “PointNeXt: Revisiting PointNet++ with improved training

and scaling strategies,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS),
Nov. 2022, pp. 23192-23204.

[9] H. Zhao, L. Jiang, C. W. Fu, and J. Jia, “Pointweb: Enhancing local

neighborhood features for point cloud processing,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 5565-5573.

[10] L. Li, L. He, J. Gao, and X. Han, “PSNet: Fast data structuring for

hierarchical deep learning on point cloud,” IEEE Trans. Circuits Syst.
Video Technol., vol. 32, no. 10, pp. 6835-6849, Oct. 2022.

[11] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution

on x-transformed points,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), vol. 31, 2018.

[12] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on

3d point clouds,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2019, pp. 9621–9630.

[13] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,” in

Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 2021, pp. 16 259–16 268.
[14] Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan, and Y. Guo, “Not all points are

equal: Learning highly efficient point-based detectors for 3d lidar point

clouds,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
2022, pp. 18953–18962.

[15] S. Kim, J. Lee, D. Im, and H. -J. Yoo, “PNNPU: A 11.9 TOPS/W high-

speed 3D point cloud-based neural network processor with block-based
point processing for regular DRAM access,” in Proc. Symp. VLSI Circuits,

Jun. 2021, pp. 1-2.

[16] J. Li, J. Zhou, Y. Xiong, X. Chen, and C. Chakrabarti, “An adjustable
farthest point sampling method for approximately-sorted point cloud data,”

in Proc. IEEE Int. Workshop Signal Process. Syst. (SiPS), Oct. 2022, pp.

1-6.
[17] Z. Wu et al., “3d shapenets: A deep representation for volumetric shapes,”

in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun.

2015, pp. 1912-1920.
[18] Distiller. Accessed: Sep. 14, 2023. [Online]. Available:

https://github.com/IntelLabs/disiller.

[19] X. Yang, T. Fu, G. Dai, S. Zeng, K. Zhong, K. Hong, and Y. Wang, “An
efficient accelerator for point-based and voxel-based point cloud neural

networks,” in Proc. ACM/IEEE Design Automation Conf. (DAC), Jul. 2023,

pp. 1-6.

[20] M. Han et al., “QuickFPS: Architecture and algorithm co-design for

farthest point sampling in large-scale point clouds,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 42, no. 11, pp. 4011-4024, Nov.
2023.

[21] I. Armeni et al., “3D semantic parsing of large-scale indoor spaces,” in

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1534-1543.

Page 5 of 10 IEEE Transactions on Circuits and Systems II: Express Briefs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/IntelLabs/distiller

