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Adjustable Multi-Stream Block-Wise Farthest 

Point Sampling Acceleration in Point Cloud Analysis 
 

Changchun Zhou*, Yuzhe Fu*, Yanzhe Ma, Eryi Han, Yifan He, Member, IEEE, and Hailong Jiao, Member, IEEE 
 

Abstract—Point cloud is increasingly used in a variety of 

applications. Farthest Point Sampling (FPS) is typically employed 

for down-sampling to reduce the size of point cloud and enhance 

the representational capability by preserving contour points in 

point cloud analysis. However, due to low parallelism and high 

computational complexity, high energy consumption and long 

latency are caused, which becomes a bottleneck of hardware 

acceleration. In this brief, we propose an adjustable multi-stream 

block-wise FPS algorithm, adjusted by four configurable 

parameters, according to hardware and accuracy requirements. A 

unified hardware architecture with one parameter is designed to 

implement the adjustable multi-stream block-wise FPS algorithm. 

Furthermore, we present a rapid searching algorithm to select the 

optimal configuration of the five parameters. Designed in an 

industrial 28-nm CMOS technology, the proposed hardware 

architecture achieves a latency of 0.005 (1.401) ms and a frame 

energy consumption of 0.09 (27.265) µJ/frame for 1 k (24 k) input 

points at 200 MHz and 0.9 V supply voltage. Compared to the state 

of the art, the proposed hardware architecture reduces the 

latency by up to 99.9%, saves the energy consumption by up to 

99.5%, and improves the network accuracy by up to 9.34%. 

 
Index Terms—Point cloud neural networks, mapping, parallelism, 

FPS, acceleration framework, energy consumption, network 

accuracy, hardware architecture. 

 

I. INTRODUCTION 

OINT cloud has recently gained popularity as a data 

source in a variety of fields, ranging from robotics [1], 

[2] and autonomous driving [3], [4] to augmented reality 

(AR) [5]. Farthest point sampling (FPS) algorithm is widely 

employed in point cloud neural networks (PNNs) [6]−[14], 

preserving shape and structural information, and significantly 

reducing the input point cloud size and computational 

complexity of PNNs. During FPS, the point which is farthest 

from the output point set is added to the output point set and 

then the process is iterated [16]. Therefore, FPS is inherently 

sequential with a long latency of O(N²) cycles and a high 

computational complexity of O(N²), where N represents the 

number of points in the point cloud [16]. Furthermore, FPS 

involves a substantial number of memory accesses of O(N²). 

Meanwhile, the grain of memory access in FPS is small, just the 

coordinates of one point. Therefore, FPS results in low memory 

access efficiency. These make FPS a bottleneck in hardware 

acceleration for point cloud analysis. Therefore, an FPS 

acceleration framework that supports parallel computing with 

low computational complexity, low latency, and low memory 

access overhead, is highly desirable. 

To solve these issues, an adjustable multi-stream block-wise 

FPS algorithm is proposed to reduce computational complexity 

and maintain accuracy. A unified hardware architecture is 

developed to implement the proposed adjustable multi-stream 

block-wise FPS algorithm. A rapid searching algorithm is 

proposed to select the best algorithm and hardware 

configurations with specified priority between accuracy and 

energy consumption. The proposed FPS acceleration 

framework improves up to 9.34% network accuracy and 

reduces up to 99.5% energy consumption and 99.9% latency per 

frame, compared to the state of the art. Designed in the TSMC 

28-nm CMOS technology, the proposed hardware architecture 

achieves a latency of 0.005 (1.401) ms and an energy 

consumption of 0.09 (27.265) µJ/frame for 1 k (24 k) input 

points at 200 MHz and 0.9 V supply voltage. 

II. BACKGROUND AND RELATED WORKS 

FPS acceleration has been investigated sporadically in recent 

years. An adjustable FPS algorithm is introduced in [16]. Point 

cloud is segmented into multiple slices, based on the spatial 

distribution. Similarly, the local FPS is then performed on each 

segment. However, if the data rearrangement mismatches the 

spatial distribution of point cloud, the network accuracy is 

significantly degraded. Furthermore, rearranging the point 

cloud data before processing leads to extra operations. [19] 

employs distribution-aware FPS. A spatial grid is used to group 

point clouds and accelerate FPS by skipping unnecessary 

computations based on a distance threshold, thereby 

maintaining accuracy. [20] employs a k-d tree to divide point 

clouds into buckets and performs intra-bucket FPS. [20] skips 

memory access of these buckets which are far from the last 

farthest point. However, both [19] and [20] suffer from serial 

FPS operations, thereby limiting computation parallelism and 

introducing long latency.  

[15] introduces a block-wise FPS algorithm to reduce latency 

with two principal steps: prediction and sampling. Two key 

parameters, namely the sparsity coefficient (S) and the number 

of blocks (B), are employed. In Fig. 1, with S = 16 and B = 8, 

the prediction step begins by reducing the input points to a 16× 

sparser set. FPS is then performed on this sparse set, following 

a count of points per block, which is then scaled up by a factor 

P 
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of 16 (S) to estimate the number of points in each block. In the 

sampling phase, the input points are initially divided into 8 (B) 

blocks. A block-wise FPS, guided by the earlier predicted 

counts, is conducted on each block. The results of each block 

are aggregated to form the final sample output. An increase in 

the values of S and B tends to reduce the complexity and latency 

of FPS, yet at the cost of accuracy loss. In detail, a higher S 

leads to the dropout of critical contour points in the prediction 

step, thereby causing prediction distortion. Similarly, a larger B 

results in a smaller number of points in each block, which 

causes a substantial discrepancy between the predicted number 

and the actual number of points. 

 

Fig. 1. The existing block-wise FPS algorithm in [15]. 

III. ADJUSTABLE MULTI-STREAM BLOCK-WISE FPS 

ACCELERATION FRAMEWORK 

A. Adjustable Multi-Stream Block-Wise FPS (AMB-FPS) 

The existing block-wise FPS in [15] suffers from large 

network accuracy loss and limited optimization space of 

computational complexity and parallelism. To address these 

challenges, an adjustable multi-stream block-wise FPS 

algorithm (AMB-FPS) is proposed to further improve 

parallelism, reduce complexity, and maintain accuracy. AMB-

FPS is composed of a multi-stream prediction stage and a multi-

stream sampling stage, as shown in Fig. 2. 

 

Fig. 2. Illustration of the mechanism of the proposed AMB-FPS. 

Compared with [15], AMB-FPS employs three additional key 

parameters, namely the number of prediction streams (PS), the 

number of cubes (C), and the number of block streams (BS). 

The sparsity coefficient (S), PS, and C are used in the multi-

stream prediction stage. C and BS are used in the multi-stream 

sampling stage.  

 

Algorithm 1 outlines the overall process of AMB-FPS. 

During the multi-stream prediction stage, PS distinct sparsity 

strategies are adopted to reduce the input points to PS small 

independent sparse point sets. FPS is performed on each set. 

Afterwards, the remained points of each set are partitioned into 

C cubes. The points are counted for each cube. The counted 

numbers in the same cube of PS sets are accumulated and then 

multiplied by S/PS to obtain the final predicted number of each 

cube in the original input point cloud. In the multi-stream 

sampling stage, the input point cloud is spatially partitioned into 

C cubes. Each cube is further uniformly sampled into BS blocks 

by adopting BS distinct sparsity strategies. The predicted 

number of each cube obtained in the first stage is also divided 

by BS. FPS is performed on each block. The remained points of 

all blocks are aggregated to obtain the final sampled points. An 

example of AMB-FPS configured with C = 8, S = 16, and PS = 

BS = 4 is illustrated in Fig. 2. The number of points before and 

after FPS is 1024 and 512, respectively. In the prediction stage, 

the introduction of PS aims to mitigate the imprecision caused 

by the loss of key points due to a larger S. C preserves the global 

features. BS improves the computational parallelism and 

reduces the load imbalance across C cubes. Therefore, 

reasonable PS and BS are beneficial for improving accuracy and 

reducing latency, respectively. The effect of the three new 

introduced parameters PS, C, and BS is also validated by 

experiments in Fig. 4 and discussed in detail in Section IV-A. 

However, a large PS causes excessive computation during the 

prediction stage, while an exaggerated BS makes FPS resemble 

random sampling. To address these challenges, in Section III-

C, a rapid searching algorithm is proposed to select a reasonable 

configuration (C, S, PS, BS) for AMB-FPS. 

B. Unified Hardware Architecture (UHA) 

The unified hardware architecture of the proposed AMB-FPS 

acceleration framework is depicted in Fig. 3. UHA consists of a 

sampling module, a partition module, a memory module, a 
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control module, and an interface module. The sampling module 

includes M cores, each of which can be configured to support 

different numbers of input points and output points. Each core 

performs the FPS of each block in Fig. 2. The partition module 

mainly consists of 16 comparators, counters, and buffers. The 

partition module is responsible for partitioning coordinates of 

point cloud into multiple blocks and performing sparsity 

strategies, providing inputs for the sampling module. The 

memory module is composed of M/2 static random-access 

memory (SRAM) banks, each bank housing N/M/2 (N is the 

number of input points) 256-bit words. An instruction set 

architecture (ISA) is designed for the off-chip host to control 

UHA. During neural network inference, the off-chip host sends 

a set of instructions to the control module. The control module 

decodes the instruction and then controls the execution of the 

sampling module, the partition module, and the allocation of the 

memory module. In the hardware architecture, the number of 

cores M is configured based on the number of blocks of AMB-

FPS in Fig. 2. Then, the numbers of SRAM banks and SRAM 

words are configured to M/2 and N/M/2, respectively. Therefore, 

a hardware implementation that aligns with the proposed AMB-

FPS is generated. 

 
Fig. 3. The architecture of the proposed UHA. 

C. Rapid Searching Algorithm (RSA) 

All the configurations of AMB-FPS and UHA are designed 

for two goals: maintaining network accuracy and minimizing 

hardware energy consumption. However, to determine the 

optimal configuration, all the configurations need to be 

evaluated. For each configuration, replacing the original FPS 

by the configured AMB-FPS, retraining the network, and then 

evaluating the hardware are required. The entire process is 

significantly time-consuming and thus impractical. Therefore, 

a rapid searching algorithm (RSA) is proposed as shown in 

Algorithm 2, which rapidly generates the optimal configuration 

of AMB-FPS and hardware architecture for specified accuracy 

and hardware requirements. 

In Algorithm 2, Loss is introduced as a comprehensive 

evaluation index of AMB-FPS and UHA, which combines the 

predicted algorithm accuracy (Acc) and hardware energy 

consumption (E) as shown in (5). A lower Loss value indicates 

superior AMB-FPS performance. The weight w is manually 

controlled to prioritize either accuracy or hardware energy 

consumption for Loss. In (4), Acc is the sum of mean absolute 

error (MAE) and an improved Mahalanobis distance (IMD). 

MAE and IMD are explained in Section IV-A. In (1), L is the 

latency of the two stages in AMB-FPS. Therefore, L is affected 

by the configurations of the proposed AMB-FPS and hardware 

architecture. In (2), Power is derived from the hardware post-

synthesis simulation by linear fitting. 

   𝐿 = (𝑅 −
𝑅2

2
) × (𝑐𝑒𝑖𝑙 (

𝑃𝑆

𝑀
) × (

𝑁

𝑆
)

2
+ 𝑐𝑒𝑖𝑙(

𝐶×𝐵𝑆

𝑀
) × (

𝑁

𝐶 ×𝐵𝑆
)

2
).   (1) 

 𝑃𝑜𝑤𝑒𝑟 = 2.9 + 1.1 × 𝑀. (2) 

  𝐸 = 𝑃𝑜𝑤𝑒𝑟 × 𝐿. (3) 

 𝐴𝑐𝑐 = 𝑁𝑜𝑟𝑚(𝐼𝑀𝐷) + 𝑁𝑜𝑟𝑚(𝑀𝐴𝐸). (4) 

 𝐿𝑜𝑠𝑠 = 𝑤 × 𝐴𝑐𝑐 + (1 − 𝑤) × 𝐸. (5)  

In Algorithm 2, for each configuration (C, S, PS, BS, M), Acc 

and E are computed. Loss for each configuration is calculated 

according to (5) and is added to Configl. Subsequently, the 

configuration in Configl with the smallest Loss is selected as the 

best configuration for AMB-FPS and hardware architecture. 

 

IV. EXPERIMENTAL RESULTS 

A. Analysis of Software and Hardware Implementations 

To evaluate the accuracy of the proposed AMB-FPS, the 

PointNeXt-S network classifying ModelNet40 [17] dataset, 

PointNet++ [6] classifying ModelNet40, and PointNeXt-S 

segmenting S3DIS [21] dataset, are trained in PyTorch as the 

benchmarks. The open-source tool Distiller [18] is used for 

pruning, quantization to 8-bit data width, and retraining to 

recover the accuracy. UHA is designed in the TSMC 28-nm 

HPC+ CMOS technology. Cadence Genus is used for logic 

synthesis at 200 MHz and 0.9 V supply voltage. To evaluate the 

power consumption, Cadence NC-Sim is used to obtain the 

realistic switching activity of the hardware, in the form of TCF 

(toggle count format) files. The TCF files are then used for 

power evaluation with Cadence Genus.  

The MAE and proposed IMD are used to evaluate the 

similarity of AMB-FPS and the original FPS. MAE represents 

the average of the absolute differences between two point 

clouds. MAE is  

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝐴𝑖 − 𝐵𝑖|𝑛

1 , (6) 

where n is the total number of points in point clouds A and B. A 

smaller MAE indicates a higher similarity between the two point 
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clouds. Improved Mahalanobis Distance (IMD) is proposed to 

reflect the difference between two point clouds. The mean value 

of each dimension for the two point clouds (P1 and P2) is 

computed to derive two representative center points, which are 

u1 and u2. Subsequently, the covariance matrices of the two 

point clouds, namely S1 and S2, are calculated and accumulated 

to obtain an overall covariance matrix. The IMD between the 

point clouds is then computed based on 

        𝐼𝑀𝐷(𝑃1, 𝑃2) = √(𝑢1 − 𝑢2)𝑇(𝑆1 + 𝑆2)−1(𝑢1 − 𝑢2) . (7) 

A larger IMD value indicates a larger difference between the 

two point clouds. Compared to MAE focusing on local details, 

IMD prioritizes the global shape of point cloud. The impact of 

diverse configurations of AMB-FPS on Acc and E are depicted 

in Fig. 4. The output point cloud of the original FPS is employed 

as a baseline for computing Acc. A larger C causes a larger error 

in the prediction stage due to the linear decrease in the number 

of points in each cube. Consequently, Acc becomes worse, as 

shown in Fig. 4a. However, the reduction in points per cube 

induces a quadratic complexity reduction in the FPS of each 

cube, thus leading to a decline in E. As S increases, the sparse 

step is more aggressive in the prediction stage, which leads to 

the deterioration of Acc, as shown in Fig. 4b. In terms of E, an 

increase in S leads to fewer points performed by FPS for each 

set during the prediction stage in Fig. 2, thus contributing to a 

reduced prediction latency and resulting in a smaller E. 

 

Fig. 4. The impact of different configurations [C, S, PS, BS] of AMB-FPS on 

Acc and E. (a) The numbers of cubes (C). (b) The sparse coefficient (S). (c) The 

numbers of prediction streams (PS). (d) The number of block streams (BS). 

The parameter PS serves as a multi-stream prediction 

mechanism designed to compensate for the accuracy loss 

caused by aggressive S. A large PS causes excessive 

computation and worse E during the prediction stage while 

optimizing Acc in (4), as PS  8 (M = 8) in this case, as shown 

in Fig. 4c.  BS is used in the multi-stream sampling stage, which 

reduces hardware complexity by reducing the number of points 

in each block. Therefore, as shown in Fig. 4d, a larger BS leads 

to a smaller E. However, BS cannot be set to be excessively 

large, which reduces the number of points per block during the 

sampling stage and makes FPS resemble random sampling. 

Meanwhile, if only BS is employed (such as [C, S, PS, BS] = [1, 

0, 0, 16] for AMB-FPS), the global features of point cloud are 

lost after uniformly sampling into BS blocks, leading to a 

significant network accuracy loss (>2%). Therefore, the 

introduction of other parameters [C, S, PS] is necessary to 

alleviate the impact of BS. The partition of input point cloud 

into C cubes preserves the global features. Meanwhile, S and 

PS enable the accurate prediction of the sampled number in 

each cube. 

B. Comparisons with the State of the Art 

To verify the effectiveness of the proposed AMB-FPS 

acceleration framework, we perform a comparative analysis 

with the original FPS and PNNPU [15]. For a comprehensive 

comparison, algorithm accuracy indicators (such as MAE, IMD, 

network accuracy, and mean Intersection-over-Union (mIoU)) 

and hardware comparative indicators (such as L and E) are 

employed. As benchmarks, PointNeXt-S and PointNet++ 

networks are used to classify ModeNet40 dataset, which is 

presented in Table I. To evaluate the efficiency of AMB-FPS on 

a large-scale dataset, PointNeXt-S is used to segment S3DIS 

dataset, which is presented in Table II.  

In Tables I and II, AMB-FPS-v0 represents the hardware-

prioritized version, which mainly optimizes L and E with less 

attention on MAE and IMD. AMB-FPS-v1 is the accuracy-

prioritized version, focusing on improvements of MAE and 

IMD yet with hardware performance loss.  In Table I, compared 

to the original FPS, AMB-FPS-v0 (AMB-FPS-v1) reduces L 

and E by 99.87% (99.8%) and 99.43% (98.5%), respectively, 

while ensuring negligible network accuracy loss (< 0.4%). 

Compared with PNNPU, AMB-FPS-v0 (AMB-FPS-v1) 

reduces MAE, IMD, L, and E by 40.09% (72.62%), 24.3% 

(68.05%), 83.87% (74.19%), and 76.06% (37.2%), respectively. 

In terms of network accuracy, AMB-FPS-v0 and AMB-FPS-v1 

surpass PNNPU by 0.73% (0.08%) and 1.05% (0.24%) for 

PointNeXt-S (PointNet++), respectively. The dataset for both 

PointNet++ and PointNeXt-S is ModelNet40, and the sampling 

rate of both networks is 1/2. Therefore, the latency, power, and 

energy consumption are the same for running PointNet++ and 

PointNeXt-S. In Table II, compared to the original FPS, AMB-

FPS-v0 (AMB-FPS-v1) reduces L and E by 99.9% (99.8%) and 

99.5% (98.57%), respectively, with no accuracy loss in FP32 

and < 1.9% accuracy loss in 8-bit quantization. Compared with 

PNNPU, AMB-FPS-v0 (AMB-FPS-v1) reduces MAE, IMD, L, 

and E by 34.92% (51.06%), 59.18% (68.45%), 86.72% (75%), 

and 79% (40.2%), respectively. In terms of mIoU of PointNeXt-

S, AMB-FPS-v0 and AMB-FPS-v1 outperform PNNPU by 

9.34% (2.76%) and 9.33% (2.91%) in FP32 (8-bit quantization), 

respectively. In [20], QuickFPS achieves a sampling time of 0.1 

ms (3 ms) for 1 k (24 k) points at 1 GHz frequency, with 

estimated 100,000 (3,000,000) cycles and energy consumption 

of 18.6 µJ (4261.5 µJ). In Table I (Table II), AMB-FPS-v0 

consumes a latency of 0.005 ms (1.401 ms) and energy of 0.09 

µJ (27.265 µJ) at 200 MHz, indicating 960 (280,151) cycles. 

Compared to QuickFPS, the proposed AMB-FPS-v0 reduces 

(a) (b)

(c) (d)
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the number of cycles by 99.04% (90.66%) and saves energy by 

99.52% (99.36%) for sampling 1 k (24 k) points. 

TABLE I 

PERFORMANCE COMPARISONS ON POINTNEXT-S AND POINTNET++ 

CLASSIFYING MODELNET40 

 Original 

FPS 

PNNPU [15] 

VLSI 2021 
AMB-FPS-v0 AMB-FPS-v1 

w : (1-w) (/105) N/A N/A 1:10 10:1 

[C, S, PS, BS] N/A [16, 16, 1, 1] [4, 32, 2, 16] [2, 32, 16, 15] 

Core (M) 1 16 64 30 

Area (mm2) 0.02 0.4* 1.63 0.76 

SRAM (KB) 8 8 8 8 

MAE 0 7.246 4.341 1.984 

IMD 0 0.169 0.128 0.054 

PointNeXt-S  

Accuracy (%) 8-bit 
91.45 90.36 91.09 91.41 

PointNet++   

Accuracy (%) 8-bit 
91.53 91.25 91.33 91.49 

L (ms) 3.932 0.031* 0.005 0.008 

Power (mW) 4 12.25* 18.74 28.7 

E (µJ) 15.729 0.376* 0.090 0.236 

*The simulation results of the re-implemented FPS hardware. 

TABLE II 

PERFORMANCE COMPARISONS ON POINTNEXT-S SEGMENTING S3DIS 

 Original 

FPS 

PNNPU [15] 

VLSI 2021 
AMB-FPS-v0 AMB-FPS-v1 

w : (1-w) (/108) N/A N/A 1:10 10:1 

[C, S, PS, BS] N/A [16, 16, 1, 1] [32, 32, 8, 4] [2, 32, 16, 16] 

Core (M) 1 16 128 32 

Area (mm2) 0.02 0.4* 3.27 0.81 

SRAM (KB) 192 192 192 192 

MAE 0 2.652 1.726 1.298 

IMD 0 0.485 0.198 0.153 

mIoU (%) FP32 62.51 53.79 63.13 63.12 

mIoU (%) 8-bit 56.83 52.23 54.99 55.14 

L (ms) 1350 10.547* 1.401 2.637 

Power (mW) 4 12.25* 18.74 28.7 

E (µJ) 5400 129.2* 27.265 77.256 

*The simulation results of the re-implemented FPS hardware. 

V. CONCLUSIONS 

In this brief, an algorithm-hardware co-designed FPS 

acceleration framework is proposed to reduce energy 

consumption while maintaining accuracy. To improve 

parallelism and reduce computational complexity, an adjustable 

multi-stream block-wise FPS algorithm is proposed. A unified 

hardware architecture for the adjustable multi-stream block-

wise FPS algorithm is designed. A rapid searching algorithm is 

developed to select the optimal configuration of the adjustable 

multi-stream block-wise FPS algorithm and the unified 

hardware architecture under specified priority between 

accuracy and energy savings. Benchmarked with PointNeXt-S 

and PointNet++ networks classifying ModelNet40 and 

PointNeXt-S network segmenting S3DIS, and designed in a 28-

nm CMOS technology, the proposed FPS acceleration 

framework achieves a latency of 0.005 (1.401) ms and a frame 

energy consumption of 0.09 (27.265) µJ/frame for 1 k (24 k) 

input points at 200 MHz and 0.9 V supply voltage. Compared 

to the state of the art, the proposed FPS acceleration framework 

reduces up to 99.9% latency, saves up to 99.5% energy 

consumption, and improves up to 9.34% network accuracy. 
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