
SoftAct: A High-Precision Softmax Architecture for
Transformers Supporting Nonlinear Functions

Journal: IEEE Transactions on Circuits and Systems for Video Technology

Manuscript ID TCSVT-16113-2023

Manuscript Type: Transactions Papers - Regular Issue

Date Submitted by the
Author: 09-Nov-2023

Complete List of Authors: Jiao, Hailong; Peking University Shenzhen Graduate School
Fu, Yuzhe; Peking University Shenzhen Graduate School
Zhou, Changchun; Peking University Shenzhen Graduate School
Huang, Tianling; Peking University Shenzhen Graduate School
Han, Eryi; Reconova Technologies Co Ltd
He, Yifan; Reconova Technologies Co Ltd

EDICS:

6.1.9 � Complexity/Power-Constrained Image/Video Processing < 6.1 �
Image/Video System Architectures < 6 � IMAGE/VIDEO
HARDWARE/SOFTWARE SYSTEMS, Low-Complexity Processing in Devices
and Sensors < 6.1.9 � Complexity/Power-Constrained Image/Video
Processing < 6.1 � Image/Video System Architectures < 6 �
IMAGE/VIDEO HARDWARE/SOFTWARE SYSTEMS, 6.2 � Image/Video
Circuits and Architectures < 6 � IMAGE/VIDEO HARDWARE/SOFTWARE
SYSTEMS, 6.2.2 � VLSI Architectures and Implementations < 6.2 �
Image/Video Circuits and Architectures < 6 � IMAGE/VIDEO
HARDWARE/SOFTWARE SYSTEMS, 6.2.3 � Low-Power Circuits and
Architectures < 6.2 � Image/Video Circuits and Architectures < 6 �
IMAGE/VIDEO HARDWARE/SOFTWARE SYSTEMS

IEEE Transactions on Circuits and Systems for Video Technology

1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

SoftAct: A High-Precision Softmax Architecture for

Transformers Supporting Nonlinear Functions

Yuzhe Fu, Changchun Zhou, Tianling Huang, Eryi Han, Yifan He, Member, IEEE, and Hailong Jiao, Member, IEEE

Abstract—Transformer-based deep learning networks are

revolutionizing our society. The convolution and attention co-

designed (CAC) Transformers have demonstrated superior

performance compared to the conventional Transformer-based

networks. However, CAC Transformer networks contain various

nonlinear functions, such as softmax and complex activation

functions, which require high precision hardware design yet

typically with significant cost in area and power consumption. To

address these challenges, SoftAct, a compact and high-precision

algorithm-hardware co-designed architecture, is proposed to

implement both softmax and nonlinear activation functions in

CAC Transformer accelerators. An improved softmax algorithm

with penalties is proposed to maintain precision in hardware. A

stage-wise full zero detection method is developed to skip

redundant computation in softmax. A compact and reconfigurable

architecture with a symmetrically designed linear fitting module is

proposed to achieve nonlinear functions. The SoftAct architecture

is designed in an industrial 28-nm CMOS technology with the

MobileViT-xxs network as the benchmark. Compared with the

state of the art, SoftAct improves up to 5.87% network accuracy,

153.2× area efficiency, and 1435× overall efficiency.

Index Terms—Transformer-based networks, nonlinear functions,

softmax, sparsity detection, overall efficiency.

I. INTRODUCTION

RANSFORMER-BASED models have demonstrated

remarkable success in a range of artificial intelligence

(AI) tasks, surpassing recurrent neural networks

(RNNs) and convolutional neural networks (CNNs) in various

domains, such as natural language processing and computer

vision [1], [2], [3], [4], [5], [6]. The conventional Transformer

networks rely on the attention mechanism and are typically

characterized by enormous model size and high computational

complexity (e.g., 307 M parameters and 190.7 G FLOPs in ViT-

L [2]), making them infeasible for implementation on resource-

constrained devices. A novel approach that combines attention

with convolution has emerged in the field of lightweight

Transformer networks [7], [8], [9], [10], [11], [12]. This

convolution and attention co-designed (CAC) Transformer

networks have the potential to significantly reduce the number

of network parameters and computational complexity (e.g.,

133.5× parameters and 272× FLOPs reductions in MobileViT

[12] compared with ViT-L) while maintaining high accuracy,

leading to better chance of deployment on edge devices.

Unfortunately, these networks utilize a great number of

nonlinear functions. These nonlinear functions have complex

mathematical forms and are unfriendly for hardware

implementation. For instance, every attention layer in the

network includes a softmax operation. The convolution layers

also have other nonlinear activation functions, such as Swish in

MobileViT and both Swish and GeLU in Conformer [9]. In the

inference stage, the delay of the nonlinear functions becomes

significant due to the high data access to DRAM and low data

reuse rate in hardware. For example, the softmax delay in GPT-

2 accounts for ~33% of the overall network delay [13].

Processing those nonlinear functions therefore becomes a

bottleneck when applying hardware acceleration to the CAC

Transformer networks.

The hardware implementation of nonlinear functions is

complex and challenging, especially for the softmax function.

This is because softmax involves both exponential and division

operations. Existing approaches do not utilize reconfigurable

architecture, but instead rely on designing individual circuits to

carry out these operations, which usually cost expensive area

and high power consumption to support high precision in

hardware implementation. Some works [14], [15] directly use

CPU to implement nonlinear functions, which introduces

significant delays in data communication. For the existing

Transformer hardware architecture, Ham [16], Rizk [17], and

Li [18] utilize the look-up table (LUT) or piecewise linear

fitting (PLF) to implement the exponential function and rely on

an area-expensive division unit to perform division operations.

In [13], the softmax function is directly implemented based on

floating-point (FP) computing units to provide high precision,

yet also with serious area and power cost. A fixed-point softmax

unit that utilizes LUT to implement the exponential function

and division is proposed in [19], which incorporates a sparsity

detection algorithm to reduce the number of softmax

operations. However, the reconfigurability of the hardware is

low, and the algorithm may not fully utilize the sparsity

provided by the softmax function.

The aforementioned works are all based on the original

softmax function, with no significant innovation in the

hardware architecture. Some other researchers have modified

the softmax function and proposed novel hardware

architectures. The log-sum-exp softmax is proposed in [20] to

avoid the complicated division operation through logarithmic

conversion, yet still with high hardware cost. A constant

multiplier strategy is proposed in [21] to calculate the exp-log-

sum function within adjustable precision based on [20].

T

This work was supported in part by the National Natural Science Foundation

of China 62074005. (Corresponding authors: Hailong Jiao and Yifan He.)

Yuzhe Fu, Changchun Zhou, Tianling Huang, and Hailong Jiao are with the

School of Electronic and Computer Engineering, Shenzhen Graduate School,

Peking University, Shenzhen, 518055, China (e-mail:

jiaohailong@pku.edu.cn). Eryi Han and Yifan He are with Reconova

Technologies Co., Ltd., Xiamen, 361015, China.

Page 1 of 11 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

However, due to the approximate implementation method, there

is still considerable room for improvement in terms of

precision. Other approximate strategies [22], [23] are also

proposed, such as the Coordinated Rotation Digital Computer

(CORDIC) algorithm and Maclaurin series. However,

sacrificing precision for better hardware performance can result

in a significant reduction in network inference accuracy, which

may not be acceptable for a variety of applications. Some works

[24], [25] simplify the mathematical mechanism of softmax

from base-e to base-2 to reduce the complexity of hardware

design. However, mainstream Transformer-based networks do

not utilize the base-2 softmax method.

Therefore, there are three issues with the existing softmax

works: low precision in hardware implementation, high power

consumption, and high area cost. To address these issues, we

propose SoftAct, an algorithm and hardware co-designed

architecture enabling efficient processing of softmax and

nonlinear activation functions in network inference. To

maintain the precision, we propose the improved softmax with

penalties algorithm, which is based on the log-sum-exp format

and includes penalty terms in linear fitting to mitigate the error

caused by approximate calculations. To reduce the power

consumption, we introduce a stage-wise full zero detection

algorithm to avoid redundant operations in softmax with no loss

in precision. Furthermore, to save the hardware area, we

propose a reconfigurable hardware architecture to support both

softmax and nonlinear activation functions. To verify the

feasibility of our algorithm in the Transformer-based network,

we use the MobileViT-xxs network, which contains both

softmax and Swish activation functions, running with

ImageNet-1k as the benchmark. The proposed SoftAct is

designed and simulated by using an industrial 28-nm CMOS

technology. Compared with the state of the art, the proposed

SoftAct achieves up to 5.87% higher network accuracy, 153.2×

higher area efficiency, and 1435× higher overall efficiency.

The rest of this paper is organized as follows. A brief review

of the background and related works is given in Section II. The

proposed algorithmic optimizations are presented in Section III.

In Section IV, the proposed SoftAct hardware architecture is

detailed. The experimental results of the proposed SoftAct are

shown in Section V. This paper is summarized in Section VI.

II. BACKGROUND AND RELATED WORKS

In this section, the fundamental concepts of CAC

Transformer networks, softmax function, and Swish function

are provided. The existing hardware implementations of

softmax and Swish functions are also introduced.

A. CAC Transformer Backbone and Self-Attention Mechanism

The recently emerged CAC Transformer models have made

a breakthrough in the field of lightweight Transformer-based

networks. The classical backbone of the CAC Transformer

model is shown in Fig. 1(a), which is composed of a series of

convolution and attention layers. The input data first passes

through convolution layers to extract features, which are

utilized as the input to the attention layers. In MobileViT [12],

the nonlinear functions play critical roles. The softmax function

is used in every attention layer. The Swish activation function

is utilized in every convolution layer and the multi-layer

perceptron (MLP) layer that follows the attention layer. The

details of the attention layer with inputs Q, K, and V are shown

in Fig. 1(b). Q×KT is firstly calculated and followed by softmax

with quantization to generate Pq. Then Pq×V is used to get the

output data. The softmax function normalizes P to a range of

(0, 1). Transformer networks typically employ 12-bit

quantization to maintain network accuracy. Lower-bit

quantization (such as 8-bit) tends to cause an accuracy loss

(>1%) [13], [19]. After quantization, the near-zero values after

softmax are rounded to 0, which leads to sparsity. Based on our

statistical analysis of MobileViT-xxs, softmax generates

19.63% sparsity under 12b quantization, and 67.40% under 8b

quantization, which can be explored for acceleration and power

savings in hardware implementation.

Fig. 1. (a) The backbone of CAC Transformer. (b) The mechanism of self-

attention. (c) The curve of the Swish activation function.

The mathematical form of the Swish function is expressed in

(1), with a wide input range and complex mathematical form.

The existing works either use high resource cost and power

consumption to meet the accuracy requirements of the Swish

function [26], or sacrifice precision by simplifying calculations,

in exchange for lower hardware complexity [27].

 𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥 ∙ 𝑠𝑖𝑔𝑚𝑜𝑑(𝑥) =
𝑥∙𝑒𝑥

1+𝑒𝑥. (1)

As shown in Fig. 1, when x is smaller than -3, the Swish output

approaches 0. When x is greater than 3, the Swish output

approaches x. By utilizing this observation, the complexity of

the Swish function can be significantly reduced, which could be

preferable for hardware implementation.

B. The Original Softmax Function

The softmax function is commonly utilized as a

normalization function in deep neural networks. The input to

the softmax layer is an N-sized vector 𝑋 = [𝑥0, 𝑥1, … , 𝑥𝑁−1].
The mathematical form of the softmax function is expressed in

(2). The softmax function is invariant to the subtraction

operation with 𝑥𝑖. Therefore, the value of 𝑥𝑖 is often subtracted

Attention

Softmax

Conv

Swish

MLP
Swish

Conv

Swish

Input

Output

Q·K
T P

Pq

Q
K

19.63% Sparsity

67.40% Sparsity

0 100%

None-Zero Part

12b

8b

Pq Distribution After n-bit Quantization

Softmax

Pq·V n-bit Quantization
V

Out

0

Swish Function Data Distribution

2

4

6

-2
-6 -4 -2 0 2 4 6 x

f(x)

-8

f(x)=0
f(x)=x

x<-3 x>3

(a) (c)

(b)

Page 2 of 11IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

by 𝑥𝑚𝑎𝑥 , which is the maximum value in X, to reduce the

computational complexity.

 𝑓(𝑥𝑖) =
𝑒𝑥𝑝(𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑗)𝑁−1
𝑗=0

=
𝑒𝑥𝑝(𝑥𝑖−𝑥𝑚𝑎𝑥)

∑ 𝑒𝑥𝑝(𝑥𝑗−𝑥𝑚𝑎𝑥)
 𝑁−1

𝑗=0

. (2)

[13], [16], [17], [18], [19] adopt (2) and use a two-stage

hardware architecture that typically comprises an exponential

unit and a division unit. However, these works can only support

the softmax function with high hardware cost. Take [19] as an

example, 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥) and 1/ ∑ 𝑒𝑥𝑝(𝑥𝑗 − 𝑥𝑚𝑎𝑥)𝑁−1
𝑗=0 are

implemented based on 16-segment PLF. These two terms are

multiplied to obtain the result of the softmax function.

However, the input range of this method is not constrained. A

large number of segments for PLF is therefore required to

ensure high precision, thereby resulting in high hardware area

cost.

C. Log-Sum-Exp Softmax Function

The log-sum-exp softmax is a simplified softmax algorithm

which is first proposed in [20] and expressed as

 𝑓(𝑥𝑖) =
𝑒𝑥𝑝(𝑥𝑖−𝑥𝑚𝑎𝑥)

𝑒𝑥𝑝 (𝑙𝑛(∑ 𝑒𝑥𝑝(𝑥𝑗−𝑥𝑚𝑎𝑥)𝑁−1
𝑗=0))

= 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥 − 𝑙𝑛(∑ 𝑒𝑥𝑝(𝑥𝑗 − 𝑥𝑚𝑎𝑥)
 𝑁−1

𝑗=0)).
 (3)

The main idea is to eliminate the division by incorporating the

logarithm function and reusing the exponential function, which

is hardware-friendly. Various methods have been proposed for

implementing the exponential and logarithmic functions in

hardware, such as CORDIC implementation [22] and linear

approximation [28]. However, most of these methods face

challenges such as large area, low operating frequency, or

precision loss, and therefore cannot achieve a good balance

between energy efficiency and precision.

A hardware-friendly implementation of exponential and

logarithmic functions is proposed in [21], which converts them

into base-2 expressions through constant multiplication. The

mathematical transformation for the exponential function is

 𝑒𝑥𝑝(−𝑥𝑖) = 2−𝑥𝑖 ∙𝑙𝑜𝑔2(𝑒), 𝑥𝑖 ≥ 0. (4)

By dividing the exponent term 𝑥𝑖 ∙ log2(𝑒) into two parts, an

integral part 𝑛𝑖 and a fractional part 𝑓𝑖 , (4) can be further

simplified as

𝑒𝑥𝑝(−𝑥𝑖) = 2−(𝑛𝑖+𝑓𝑖) = 2−𝑓𝑖 ∙ 2−𝑛𝑖

= 2−𝑓𝑖 ≫ 𝑛𝑖 , 𝑓𝑖 ∈ [0, 1).
 (5)

The exponential function is thereby converted to a constant

multiplication, 2−𝑓𝑖, and a shift operation, which are easy for

hardware implementation.

The mathematical transformation for logarithmic function is

 𝑙𝑛(𝑆) = 𝑙𝑛(2) ∙ 𝑙𝑜𝑔2(𝑆), (6)

where 𝑆 = ∑ 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥)𝑁−1
𝑖=0 and 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥) ∈

(0, 1]. Suppose 𝑆 = 𝑢 ∙ 2𝑣 , where u is a real number in [1, 2)

and v is an integer. Then the logarithmic function can be

simplified as

𝑙𝑛(𝑆) = 𝑙𝑛(2) ∙ 𝑙𝑜𝑔2(𝑢 ∙ 2𝑣) (7)

By utilizing log2(𝑢) ≈ 𝑢 − 1 , 𝑢 ∈ [1, 2) , (7) is further

simplified as

 𝑙𝑛(𝑆) = 𝑙𝑛(2) ∙ (𝑣 + 𝑢 − 1) (8)

(8) can reduce the hardware complexity but introduce ~14.78%

average error in the implementation of 𝑙𝑜𝑔2(𝑢) , which

negatively impacts the softmax precision. The constant

multiplication in hardware, which is based on approximate

calculations, further degrades the softmax precision. Therefore,

there is still a large room for performance improvement in [21].

The accuracy of Transformer-based models is highly

sensitive to nonlinear functions, thereby requiring high-

precision hardware implementations [29]. However, most of the

existing works compromise the precision of softmax for higher

frequency and lower hardware complexity, while not

supporting any other functions. Therefore, we propose an

algorithm-hardware codesigned SoftAct architecture to address

the above challenges. In terms of algorithm, we propose an

improved softmax with penalties algorithm to maintain the

softmax precision in hardware implementation. Furthermore,

we introduce a stage-wise full zero detection algorithm to

exploit the sparsity caused by quantization of softmax to avoid

redundant operations. In terms of hardware, we design a

compact and reconfigurable hardware architecture, which

supports various nonlinear functions with low hardware cost.

While many existing works verify their approaches using

simple CNNs, these methods often fail on Transformer-based

networks. We employ the MobileViT-xxs network as our

benchmark to affirm the feasibility of our proposed methods in

Transformer-based networks.

III. IMPROVED ALGORITHMS FOR SOFTMAX AND SWISH

In this section, the software innovations of the proposed

SoftAct are introduced. Three algorithmic optimization

techniques are proposed to improve the precision of the softmax

function and enable the reconfigurable hardware design to

support the Swish function. Firstly, to overcome the precision

degradation caused by the approximate calculations in

hardware, an improved softmax function with penalties is

proposed. Secondly, a stage-wise full zero detection algorithm

is introduced to eliminate redundant calculations during

softmax operations. Thirdly, to support various nonlinear

functions, a unified computation framework that incorporates a

low-bit-width Swish is proposed.

A. Improved Softmax with Penalties (ISP)

The high-precision hardware implementation of softmax

encounters two main challenges. Firstly, the input range of

exponential function and division in traditional softmax is large,

posing challenges for accurate calculation even with a large-

segment PLF. Secondly, although the existing log-sum-exp

softmax algorithm saves division and constrains the input

range, the hardware implementation introduces errors caused

by approximate constant multiplications. Simply increasing the

bit width of the system results in a small accuracy gain

compared to the caused significant bandwidth and area losses

to the hardware. For instance, increasing the bit width from 16b

to 32b can reduce the mean average error (MAE) of softmax by

20%, but with a 61% area overhead. Therefore, we propose an

Page 3 of 11 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

improved softmax with penalties (ISP), which is based on the

log-sum-exp softmax to constrain the input range. Furthermore,

we introduce penalty terms by incorporating the error terms

caused by the approximate constant calculation into (4) and (7).

These penalty terms are then used to correct the coefficients of

PLF, thus reducing the MAE by up to 99.29% in 16b as shown

in Section V-A with nearly no area overhead. The details of ISP

are shown below.

The original softmax is firstly transformed into (3), with two

exponential functions and one logarithmic function. When

implementing the exponential function, the error is defined as

 𝑒𝑟𝑟0 = 𝑙𝑜𝑔2(𝑒) − 𝑙𝑜𝑔2(𝑒)ℎ, (9)

where 𝑙𝑜𝑔2(𝑒) is the full precision value and 𝑙𝑜𝑔2(𝑒)ℎ is the

approximate value obtained by the hardware. By introducing

𝑒𝑟𝑟0 into (4), we can obtain

𝑒𝑥𝑝(−𝑥𝑖) = 2−𝑥𝑖∙(𝑙𝑜𝑔2(𝑒)ℎ+𝑒𝑟𝑟0)

= 2−𝑥𝑖∙𝑒𝑟𝑟0 × 2−𝑥𝑖 ∙𝑙𝑜𝑔2(𝑒)ℎ .
 (10)

Suppose −𝑥𝑖 𝑙𝑜𝑔2(𝑒)ℎ = −(𝑛𝑖 + 𝑓𝑖) , where 𝑛𝑖 is the integer

part and 𝑓𝑖 is the fractional part. The exponential calculation

can be converted as

 𝑒𝑥𝑝(−𝑥𝑖) = 2
−𝑒𝑟𝑟0∙(𝑛𝑖+𝑓𝑖)

𝑙𝑜𝑔2(𝑒)ℎ × 2−(𝑛𝑖+𝑓𝑖)

= 2
−𝑛𝑖∙

𝑒𝑟𝑟0
𝑙𝑜𝑔2(𝑒)ℎ × 2

−𝑓𝑖∙(1+
𝑒𝑟𝑟0

𝑙𝑜𝑔2(𝑒)ℎ
)

≫ 𝑛𝑖,

 (11)

where ≫ is a right shift operation. There are two error terms in

(11), where 2
−𝑓𝑖∙(

𝑒𝑟𝑟0
𝑙𝑜𝑔2(𝑒)ℎ

)
 represents the effect of 𝑒𝑟𝑟0 on the

fractional part, and 2
−𝑛𝑖∙

𝑒𝑟𝑟0
𝑙𝑜𝑔2(𝑒)ℎ reflects the impact of 𝑒𝑟𝑟0 on

the integer part. Incorporating these error terms into the PLF

can complete the correction process. Suppose the internal

penalty 𝑃𝑖𝑛 =
𝑒𝑟𝑟0

𝑙𝑜𝑔2(𝑒)ℎ
 and overall penalty 𝑃𝑜𝑣 = 2

−𝑛𝑖∙
𝑒𝑟𝑟0

𝑙𝑜𝑔2(𝑒)ℎ as

shown in (12). Note that 𝑃𝑖𝑛 is determined by 𝑙𝑜𝑔2(𝑒)ℎ and 𝑃𝑜𝑣

is determined by 𝑃𝑖𝑛 and 𝑛𝑖 . We introduce an external

coefficient 𝑝0 to replace 𝑛𝑖 , thereby achieving the idea of

manually customizing the penalty strength of 𝑃𝑜𝑣 by adjusting

𝑝0. Therefore, 𝑃𝑜𝑣 = 2−𝑝0∙𝑃𝑖𝑛. The optimal value for 𝑝0 can be

iteratively determined through software-based statistical

analysis of input data. Then, by performing PLF on

2−𝑓𝑖∙(1+𝑃𝑖𝑛) , we can get

𝑒𝑥𝑝𝑝0

(−𝑥𝑖) = 𝑃𝑜𝑣 × 2−𝑓𝑖∙(1+𝑃𝑖𝑛) ≫ 𝑛𝑖

= 𝑃𝑜𝑣 × (𝑘 ∙ 𝑓𝑖 + 𝑏) ≫ 𝑛𝑖 ,
 (12)

where k and b represent the coefficients after linear fitting.

The high-precision logarithmic function is also implemented

based on PLF, similar to the implementation of the exponential

function. Firstly, the error 𝑒𝑟𝑟1 is defined as

 𝑒𝑟𝑟1 = 𝑙𝑛(2) − 𝑙𝑛(2)ℎ, (13)

where 𝑙𝑛(2) represents the full-precision value and 𝑙𝑛(2)ℎ

represents the approximate value used in hardware. After

introducing 𝑒𝑟𝑟1 into (7),

𝑙𝑛(S) = (𝑙𝑛(2)ℎ + 𝑒𝑟𝑟1) ∙ 𝑙𝑜𝑔2(𝑢 ∙ 2𝑣)

= (𝑙𝑛(2)ℎ + 𝑒𝑟𝑟1) ∙ 𝑣 + 𝑙𝑛(2) ∙ 𝑙𝑜𝑔2(𝑢),
 (14)

where 𝑢 and 𝑣 are explained in Section II-C. By performing

PLF on 𝑙𝑜𝑔2(𝑢), we obtain

 𝑙𝑛𝑝1
(𝑆) = 𝑙𝑛(2)ℎ ∙ 𝑣 + 𝑙𝑛(2) ∙ (𝑘′ ∙ 𝑢 + 𝑏′) + 𝑃𝑙𝑛 , (15)

where the logarithmic penalty term 𝑃𝑙𝑛 = 𝑒𝑟𝑟1 ∙ 𝑣 . The

coefficients k’ and b’ are obtained by linear fitting. 𝑒𝑟𝑟1 is

determined by 𝑙𝑛(2)ℎ . We introduce another external

coefficient 𝑝1 to replace 𝑣 and to manually adjust the penalty

strength of 𝑃𝑙𝑛 . 𝑝1 is determined by analyzing the range of input

data. Therefore, 𝑃𝑙𝑛 = 𝑒𝑟𝑟1 ∙ 𝑝1 , which can be determined

before hardware implementation. To sum up, the final

expression of ISP is

 𝑓𝑝0𝑝1
(𝑥𝑖) = 𝑒𝑥𝑝𝑝0

(𝑥′𝑖 − 𝑙𝑛𝑝1
(∑ 𝑒𝑥𝑝𝑝0

(𝑥′𝑗)𝑁−1
𝑗=0)), (16)

where 𝑥′𝑖 = 𝑥𝑖 − 𝑥𝑚𝑎𝑥.

For the determination of 𝑝0 and 𝑝1 , we have made the

following optimizations. If the input data range is fixed, the

optimal values of 𝑝0 and 𝑝1 can be determined by an iterative

algorithm. However, for real network data, the data ranges can

vary significantly among different layers. Frequent changes in

the values of 𝑝0 and 𝑝1 lead to changes in the linear fitting

coefficients, which in turn require frequent updating in

hardware and ultimately harm the latency and power

consumption of the system. To solve this issue, we propose a

constant-adaptive penalty algorithm. The constant penalty is

applied to (12). 𝑃𝑖𝑛 is obtained by linear fitting with no impact

on the latency and power consumption of the hardware, while

𝑃𝑜𝑣 is determined by 𝑝0 . Therefore, we set 𝑝0 as a constant

number to fix k and b of the exponential function. For (15), 𝑃𝑙𝑛

is determined by 𝑝1 and can be implemented through constant

addition in hardware. We apply (17) as the adaptive penalty on

𝑝1. 𝑡ℎ is the threshold value determined by the network data.

 𝑝1 = {
0, 𝑖𝑓 𝑣 < 𝑡ℎ
𝑡ℎ, 𝑖𝑓 𝑣 ≥ 𝑡ℎ

 . (17)

By analyzing the real network data, it is found that the range

of 𝑣 is [0, 6]. Therefore, we choose 𝑡ℎ = 3 in this case. By

using the fixed and adaptive penalty algorithm, reloading the

linear fitting coefficients of the softmax function is unnecessary

when the input ranges vary, and the precision of the function is

still maintained.

Compared with the original function (2), we use the log-exp-

sum algorithm to avoid the division operation and constrain the

input range of linear fitting. Furthermore, we introduce penalty

terms to mitigate the errors caused by approximate constant

multiplication, and external variables 𝑝0 and 𝑝1 to control the

strength of the penalty terms, which are used for correcting

linear fitting coefficients. 𝑝0 and 𝑝1 are determined by an

iterative algorithm for a fixed input range, or by the constant-

adaptive penalty algorithm for a variable network data range.

Therefore, the corrected coefficients, which are 𝑃𝑜𝑣 ∙ (𝑘, 𝑏) in

(12) and 𝑙𝑛(2) ∙ (𝑘′, 𝑏′) in (15), are fixed before hardware

implementation. ISP does not affect the hardware performance

while improving precision.

B. Stage-wise Full Zero Detection (SFZD)

Global attention contains massive small attention scores [13],

which are Q×KT in Fig. 1(b). The softmax layer normalizes

Page 4 of 11IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

these scores to clarify the relevance of inputs, which

exponentially reduces the small attention score to a near-zero

number. After quantization, these near-zero numbers are

rounded to 0, resulting in a sparse softmax. Skipping these zeros

causes no accuracy loss while saving power consumption. We

propose a stage-wise full zero detection (SFZD) algorithm

based on log-sum-exp softmax to fully skip zeros in softmax.

The conventional n-bit quantization method, as shown in Fig.

2, first performs a range check on the input P to get its 𝑚𝑎𝑥 and

𝑚𝑖𝑛 values. Then P is mapped to the quantization domain to

obtain 𝑃𝑄, which is 0 when

𝑃−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
< 2−𝑛. (18)

P is the output of the softmax, whose range is [0, 1). Therefore,

we can directly set 𝑚𝑎𝑥 = 1 and 𝑚𝑖𝑛 = 0 in (18). Substituting

(3) into (18) with further simplification, we can obtain the core

idea of SFZD: after n-bit quantization, if 𝑒𝑥𝑝(𝑖𝑛) < 2−𝑛, where

𝑖𝑛 is the input value of the exponential function, the output of

softmax is 0. The SFZD contains two-stage detection (Stage1

and Stage3 shown in Fig. 2) in the log-sum-exp softmax to skip

redundant computation. In Stage1, SFZD is applied before

𝑒𝑥𝑖−𝑥𝑚𝑎𝑥 calculation as shown in (19). In Stage3, (20) is used to

detect the sparsity of 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥 − 𝑙𝑛(𝑆)).

 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥) < 2−𝑛 ⇒ 𝑥𝑖 − 𝑥𝑚𝑎𝑥 < −𝑛 ∙ 𝑙𝑛(2). (19)

 𝑥𝑖 − 𝑥𝑚𝑎𝑥 − 𝑙𝑛(𝑆) < −𝑛 ∙ 𝑙𝑛(2). (20)

Fig. 2. The mechanisms of quantization and stage-wise full zero detection.

After evaluation in Section V-B, our proposed SFZD can

fully utilize the sparsity provided by softmax to skip the

redundant computations. Note that SFZD does not create new

sparsity but rather leverages the existing sparsity, thereby not

affecting the network accuracy.

C. Unified Computation Framework

The Swish activation function is shown in (1), which

includes both multiplication and sigmoid calculations. Due to

the complex mathematical expression, the Swish function is

difficult to be directly implemented in hardware. To solve this

issue, we propose a low-bit width Swish (LBS), which replaces

the Swish function with (21) to constrain the input data range

and reduce the bit width requirement based on a hardware-

friendly Swish (hswish) [30].

 𝐿𝐵𝑆 = {

0, 𝑥 ∈ (−∞, −3)

𝑃𝐿𝐹(𝑥2 6⁄ + 𝑥 2⁄), 𝑥 ∈ [−3, 3]
𝑥, 𝑥 ∈ (3, ∞)

. (21)

For LBS, the range of input x is first checked. If 𝑥 < −3 or

𝑥 > 3, no further calculation is needed. Therefore, LBS reduces

the calculation range from (−∞, ∞ of the original Swish

function to [-3, 3] and achieves the low-bit width feature. When

−3 ≤ 𝑥 ≤ 3 , a PLF is used to calculate 𝑥2 6⁄ + 𝑥 2⁄ . As the

number of segments increases, the precision increases but with

more hardware cost.

We substitute LBS with different PLF configurations into the

network for training and finally determine that 8-segment PLF

for LBS, which is shown in Fig. 3, can guarantee network

accuracy (<0.5% degradation).

Fig. 3. Comparison between Swish and our 8-segment LBS.

To accommodate both the softmax function and other

nonlinear functions, we propose a unified computation

framework for ISP and LBS in Algorithm 1. The method first

configures the inner data flows according to the input Mode.

Before the calculation, the sparsity is firstly calculated, which

are Line 5 and Line 12 for ISP based on the SFZD, and Line 18

for LBS in Algorithm 1, to skip the redundant operations. The

computation process for ISP involves three stages.

● Stage1: Detect sparsity, calculate 𝑃𝑜𝑣 × 2−𝑓𝑖∙(1+𝑃𝑖𝑛) in (12)

and sum up 𝑒𝑥𝑝𝑝0
(𝑥𝑖

′), which are from Line 2 to Line 8.

● Stage2: Calculate 𝑙𝑛𝑝1
(𝑆), which is Line 9.

● Stage3: Repeat Stage1 except summing up 𝑒𝑥𝑝𝑝0
(𝑥𝑖

′) ,

which are Line 10 to Line 15.

One stage is needed for LBS：

● Stage4: Check the input range and get the corresponding

output. If the input is in [-3, 3], then calculate 𝑥2 6⁄ + 𝑥 2⁄

in (21), which are Line 17 to Line 21.

Stage 1:

Exp & Sum up

Stage 2:

Ln

Stage 3:

Exp

min maxP 0 1

Near-0

Zero After Quantization

n-bit PQ

Sparsity Detect

Pxi

n-bit

Quantization

0

2

4

6

8

-8 -6 -4 -2 0 2 4 6 8

Swish

8-seg LBS

S
w

is
h
 /
 8

-s
e
g

 L
B

S

x

Page 5 of 11 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The calculation flows for the exponential function and

logarithmic function in ISP are shown in Algorithm 2 and

Algorithm 3, respectively. In Algorithm 2, a constant

multiplication is initially performed on 𝑥𝑖 to drive 𝑛𝑖 and 𝑓𝑖 .

Then 𝑒𝑥𝑝𝑝0(𝑥𝑖) is computed based on (12). In Algorithm 3, a

leading one detector (LOD) is firstly used to find out the highest

1-bit position, which is v in (14). Then, u is obtained through a

shifting operation and 𝑙𝑛𝑝1(𝑆) is computed based on (15). The

proposed ISP improves precision by refining the coefficients of

linear fitting, without incurring additional computational

overhead. These algorithms can be implemented by

reconfiguring modules and data paths in hardware to save area

cost. For example, the different linear fitting operations of the

expp0, lnp1, and 8-segment LBS in Algorithm 1 can be computed

by reconfiguring the linear fitting module. By leveraging these

characteristics, we propose a novel hardware architecture that

is compact and highly reconfigurable in Section IV.

IV. HARDWARE ARCHITECTURE

In this section, we design a compact and reconfigurable

SoftAct architecture to support the efficient execution of the

proposed improved softmax with penalties (ISP), stage-wise

full zero detection (SFZD), and low-bit width Swish (LBS)

algorithms. An overview of the SoftAct architecture is provided,

followed by explanations of the reconfigurable data paths. To

address the mismatching issues during different modes, we

propose a symmetric detection and storage structure for a linear

fitting module. Furthermore, the detailed structures of other

modules are provided.

A. The Overall Architecture

According to the unified computation framework, the overall

hardware architecture for SoftAct is designed and shown in Fig.

4. The design mainly consists of a sparsity detection module, a

linear fitting module, a LOD module, and an adaptive shifter.

The sparsity detection module is responsible for implementing

the proposed stage-wise full zero detection (SFZD) for ISP and

range detection for LBS. The linear fitting module is used for

computing nonlinear functions based on PLF, which is a core

unit in this architecture. The adaptive shifter module is used for

the shifting operations.

Fig. 4. (a) The overall architecture for SoftAct. (b) Stages and configuration.

To achieve a high frequency and reconfigurable architecture,

there are five stages in the computation flow, as shown in Fig.

4(b). Stage1 to Stage4 in Fig. 4(b) correspond to Stage1 to

Stage4 in Algorithm 1, respectively. Each stage in Fig. 4(b)

represents a different function and employs a different data

flow. Stage0, called Idle, is responsible for receiving the linear

fitting coefficients from external sources and storing them in the

linear fitting module. When operating in the ISP mode, the

SoftAct architecture executes from Stage1 to Stage3. Stage1

with a four-stage pipeline is illustrated in Fig. 5(a). In the

pipeline, the input is processed by the sparsity detection module

in the first stage. This is followed by the constant multiplication

and linear fitting modules in the second and third stages,

respectively. In the final stage, the data is processed by the

shifter module and sum up module to complete Algorithm 2 and

the accumulation. The linear fitting module is used to calculate

2𝑝0

−𝑓𝑖. If the sparsity detection module detects that the data meet

the conditions specified in (19), subsequent operations are

bypassed and Output is set to 0. The three-stage pipeline of

Stage2 is illustrated in Fig. 5(b). The data stored in the register

of the sum up module is utilized as the input data. This data,

after passing through the LOD module and the shifter module

in the first stage, is processed in the linear fitting module to

perform 𝑙𝑜𝑔2(𝑢)𝑝1
 in Algorithm 3. Then, the adder unit in the

sum up module is reused to complete the logarithmic function.

Stage3 is the last stage in the ISP mode, as shown in Fig. 5(c)

with a four-stage pipeline. The data flow of Stage3 is similar to

Stage1 with few differences: the input and output paths are

modified, the sparsity detection module achieves (20), and the

sum up module is not used. There is one stage to implement the

8-segment LBS, which is Stage4 as shown in Fig. 5(d) with a

three-stage pipeline. Input is fed into the sparsity detection

module to avoid redundant computations. The linear fitting

module is reconfigured to implement the nonlinear function in

(21). Therefore, a significant portion of modules in the SoftAct

-

0

1

<-n·ln2

>3, <-3

Sparsity Detection

concat
log2(e)

×

frac

inta

Barrel

Shifter

>>

0

1
0

1

1 0

0

 1

RegFile

en

en

LOD

log2(e)

×

0

 1
0

 1

+

Psum

A
d
d

re
s
s

D
e

te
c
te

r

0

1

2

3

0

 1

0

O
u

tp
u

t

Linear Fitting

Sum Up

S0

S1

S2

S3

S4

S5

S6

S8S7

S9

M
a
x

 i
n

p
u

t
In

p
u

t

Control Logic

M
o

d
e

+×

1
st

Exp

Sum up

2
nd

Exp

Ln

Mode

ISP

LBS

Stage

1
st

Exp Sum

2
nd

Exp

Ln

1

0

--

S0

0

0

0

S1

1

1

0

S2

1

1

0

S3

0

0

1

S4

0

--

1

S5

0

--

1

S6 S8S7

00

--

01

LBS -- 1 -- -- -- -- -- 10/11
LBS

(a)

(b)

1

2

3

4

Idle
Idle -- -- -- -- -- -- -- --0--

Page 6 of 11IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

7

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

architecture are reused multiple times to achieve various

functions with minimal hardware cost. Thanks to the fixed and

adaptive penalty algorithm in Section III-A, SFZD in Section

III-B, and the symmetric detection and storage structure in

Section IV-B, there is no need to return to Stage0 to update the

linear fitting coefficients in the ISP mode. In contrast, the

approach proposed in [21] requires updating the LUT of the

exponential function for different stages, causing extra power

consumption and system delay.

B. The Symmetric Detection and Storage

The linear fitting module is the core component in SoftAct to

achieve nonlinear function calculations based on PLF. The

linear fitting module mainly consists of an address detector, a

Register File (RegFile), a penalty module, a multiplier, and an

adder, as illustrated in Fig. 6(a). The address detector module

generates the address to the RegFile module based on the input

data. The RegFile module is used for storing and retrieving the

linear fitting coefficients, which are then passed to the

multiplier and the adder. The penalty module represents 𝑃𝑙𝑛 in

(15). The NeedP signal refers to the control signal for the

adaptive algorithm (17), which can be generated by checking

the output of the LOD module. Since 𝑡ℎ = 3 is predetermined,

the penalty module is considered a constant addition.

We use 4-segment PLF to perform the calculation of

exponential and logarithmic functions in ISP, and 8-segment

PLF for LBS. This results in mismatching issues between the

segmentation detection of input data and the loading of the PLF

coefficients during different modes. For example, during ISP,

the address detector module needs to detect four segments for

exp and ln, whose inputs are in the range of [0, 1) and [1, 2),

respectively. They are corresponding to two sets of four PLF

coefficients. For LBS, eight segments need to be detected within

the range [-3, 3] with eight PLF coefficients. To address this

issue, we propose a symmetric detection and storage structure

for the linear fitting module, which can achieve the

aforementioned functions with minimal hardware cost, as

shown in Fig. 6.

Fig. 6. (a) The architecture of the linear fitting module (PD: position detector).

(b) The mechanism of the symmetric detection and storage design.

h = 0

011101

000 001 010 011

110 111

010

Data Adapter

[0,3] PD[0,1] PD

Concat

*

0 1

Penalty

Data

NeedP

data

h

pos

addr Output

S0

Address Detector RegFile k & b

exp

0 1

ln
1 2

LBS
-3 3

k0 k1 k2 k3

k0 k1 k2 k3

k0 k1 k2 k3 k4 k5 k6 k7

111 110 100 000 001

100 101addr

addr
ISP

S
y
m

m
e

tric

Symmetric

addr

Mode

R
e

g
F

ile
-k

+

h = 0
pos =

[0,1] PD

h = 1

pos = [0,3] PDh = 1

k,b0exp

k,b1exp

k,b2exp

k,b3exp

k,b0ln

k,b1ln

k,b2ln

k,b3ln

k,b4LBS

k,b5LBS

k,b6LBS

k,b7LBS

k,b3LBS

k,b2LBS

k,b1LBS

k,b0LBS

addr

0 00

0 01

0 10

0 11

1 00

1 01

1 10

1 11

ISP LBS
{h pos}

(a)

(b)

R
e

g
F

ile
-b

Fig. 5. Configured data paths and detailed pipelines of major functions. (a) The 1𝑠𝑡 exponential calculation and sum up. (b) Logarithmic calculation. (c) The 2𝑛𝑑

exponential calculation. (d) The 8-segment LBS operation.

-

0

1

<-n·ln2

>3, <-3

Sparsity Detection

concat
log2(e)

×

frac

inta

Barrel

Shifter

>>

0

1
0

1

1 0

0

 1

RegFile

en

en

LOD

log2(e)

×

0

 1
0

 1

+

Psum

A
d
d

re
s
s

D
e

te
c
te

r

0

1

2

3

0

 1

0

O
u

tp
u

t

Linear Fitting

Sum Up

S0

S1

S2

S3

S4

S5

S6

S8S7

S9

(a)

-

0

1

<-n·ln2

>3, <-3

Sparsity Detection

concat
log2(e)

×

frac

inta

Barrel

Shifter

>>

0

1
0

1

1 0

0

 1

RegFile

en

en

LOD

ln(2)

×

0

 1
0

 1

+

Psum

A
d
d

re
s
s

D
e

te
c
te

r

0

1

2

3

0

 1

0

Linear Fitting

Sum Up

S0

S1

S2

S3

S4

S5

S6

S8S7

S9

M
a
x

 i
n

p
u

t
In

p
u

t

(b)

-

0

1

<-n·ln2

>3, <-3

Sparsity Detection

concat
log2(e)

×

frac

inta

Barrel

Shifter

>>

0

1
0

1

1 0

0

 1

RegFile

en

en

LOD

ln(2)

×

0

 1
0

 1

+

Psum

A
d
d

re
s
s

D
e

te
c
te

r

0

1

2

3

0

 1

0

Linear Fitting

Sum Up

S0

S1

S2

S3

S4

S5

S6

S8S7

S9

(d)

-

0

1

<-n·ln2

>3, <-3

Sparsity Detection

concat
log2(e)

×

frac

inta

Barrel

Shifter

>>

0

1
0

1

1 0

0

 1

Regfile

en

en

LOD

log2(e)

×

0

 1
0

 1

+

Psum

A
d
d

re
s
s

D
e

te
c
te

r

0

1

2

3

0

 1

0

Linear Fitting

Sum Up

S0

S1

S2

S3

S4

S5

S6

S8S7

S9

(c)

Control Logic

M
o

d
e

+× +×

+×

Control Logic

Control Logic Control Logic

M
a
x

 i
n

p
u

t
In

p
u

t
M

o
d

e

O
u

tp
u

t

O
u

tp
u

t

M
a
x

 i
n

p
u

t
In

p
u

t
M

o
d

e

M
a
x

 i
n

p
u

t
In

p
u

t
M

o
d

e

O
u

tp
u

t

+×

 : : : : Stages in Pipeline:

Page 7 of 11 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

8

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

The data adapter first generates h based on the input signals

Mode and Stage. When Mode is ISP, h=0 for exp and h=1 for

ln. Note that only the fractional data are needed for the 4-

segment detection within [0, 1) and [1, 2). Therefore, the data

adapter extracts the fractional part of the Data to obtain data',

which is passed to the [0, 1] position detector (PD) for both [0,

1) and [1, 2) detection to obtain the position signal pos. When

Mode is LBS, the data adapter obtains h based on the sign bit of

Data and takes its absolute value to get data’, which is in the

range of [0, 3]. Consequently, only one 4-segment detector [0,

3] PD is required and generates the pos signal for 8-segment

detection. Finally, h and pos are concatenated to get the address

information addr, which is then passed to the RegFile module.

The RegFile stores the corresponding k and b symmetrically, as

shown in Fig. 6(b), to accomplish all the required functions.

C. The LOD Module and Adaptive Shifter Module

The LOD module is used to detect the position of the highest

1-bit position in the input data. We optimize this module based

on the binary search algorithm, as illustrated in Fig. 7 by using

an example with 8-bit input In and a 3-bit output Out. Compared

to the conventional LOD structure, the proposed binary search

structure reduces the computational complexity from O(n to

O(log n , thus effectively reducing the latency.

Fig. 7. The architecture of the LOD based on the binary search algorithm.

The adaptive shifter module is reused multiple times when

implementing the softmax function. The module has two input

ports: data and num, realizing the function of data >> num,

where num is a variable. We implement this unit based on the

barrel shifter structure, as shown in Fig. 8 with an example of

3-bit num.

Fig. 8. The architecture of the adaptive shifter.

V. EXPERIMENTAL RESULTS

In this section, the proposed SoftAct is evaluated at both the

software and hardware levels. In the software implementation,

we use PyTorch to realize the proposed algorithms, perform

analysis, and compare ISP and SFZD with the state of the art in

terms of algorithm precision, network accuracy, and sparsity

utilization rate. Then we evaluate and compare the area and

power consumption of the proposed SoftAct architecture with

the state of the art.

A. Analysis of ISP Precision and Network Accuracy

For the existing method [21], several sets of random values

with different ranges following a uniform distribution are

chosen as the input data of softmax. However, the results of

this method are unstable due to insufficient randomness within

each set. For instance, the algorithm may perform well under

certain random conditions, but poorly under others. To address

this issue, we propose a more rigorous testing method, namely

grouped set random test, to eliminate the instability. We use 50

groups of four different sets as the input data. Each set contains

5000 random values in different ranges, which are denoted as

rand1, rand5, rand10, and rand100. For instance, the rand10 set

consists of 5000 randomly selected points in the interval [-10,

10] that adhere to a uniform distribution. To compare the results

with other algorithms, we use two metrics: the mean absolute

error (MAE) and the mean square error (MSE).

 𝑀𝐴𝐸 =
1

𝑔
∑ (

1

𝑛
∑ |𝑜𝑎 − 𝑜𝑡|)𝑛

𝑗=1
𝑔
𝑖=1 , (22)

 𝑀𝑆𝐸 =
1

𝑔
∑ (

1

𝑛
∑ (𝑜𝑎 − 𝑜𝑡)2).𝑛

𝑗=1
𝑔
𝑖=1 (23)

𝑜𝑎 is the output value of proposed algorithms, 𝑜𝑡 is the

theoretical value of the softmax function, 𝑛 is the number of

points in each set, and 𝑔 is the group number. A lower MAE

indicates consistent precision, while a lower MSE emphasizes

the proficiency of the method in mitigating large error.

The MAE and MSE comparisons between ISP and the latest

three works under 50-group random data are shown in Fig. 9.

We reduce 99.29%, 97.87%, and 88.89% MAE and 99.76%,

99.66%, and 97.74% MSE compared to [19], [20], and [21],

respectively, in grouped set random test. The softmax method

in [19], which is based on the original softmax, is set as the

baseline softmax. Compared with the baseline, the

improvement can be attributed to two factors. Firstly, the log-

sum-exp format of ISP saves the division operation and

constrains the data range for PLF, which reduces 66.44% MAE

and 30.56% MSE compared to the baseline. Secondly, the

introduced penalty algorithm in ISP effectively reduces errors

caused by approximate constant multiplication, thereby further

reducing 97.87% MAE and 99.66% MSE compared to only

using the log-sum-exp format.

Fig. 9. The MAE, MSE, and network accuracy comparison of different softmax

methods.

To compare the proposed algorithm with the state-of-the-art

algorithms on the CAC Transformer network, we implement

OR

0

1

OR

In [7:4]

In [3:0]

Out [2]

Out [1]
CUT

t0 t0 [3:2]

CUT
CUT

CUT

CUT

Out [0]t1
t0 [1:0]

0

1 t1 [1]

In [7:0]

>>2 1

0

1

0

>>4 1

0

>>1
data

num[0] num[1] num[2]

Out

Page 8 of 11IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

9

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

them on the MobileViT-xxs for verification. The open-source

tool Distiller [31] is used for quantization and retraining

MobileViT-xxs to recover the accuracy. The highest network

accuracy we can achieve under different methods (12-bit and 8-

bit quantization) is shown in Fig. 9.

The accuracy of the MobileViT-xxs network is 68.42% for

FP32 implementation. The network accuracy at 12-bit

quantization is acceptable when using the baseline softmax

method in [19] with 0.9% accuracy loss, but declines severely

at 8-bit quantization with 6.68% accuracy loss. This is because

radical network quantization degrades the network accuracy,

and the low-precision softmax method in [19] worsens the

accuracy degradation caused by radical quantization. The

methods in [20] and [21] can ensure accuracy at 12-bit

quantization with 0.54% and 0.29%, respectively. However,

their accuracies are not acceptable at 8-bit quantization with

2.47% and 1.3% degradation, respectively. The proposed ISP

ensures 68.35% network accuracy at 12-bit quantization with

nearly no degradation, and exhibits only 0.81% accuracy loss at

8-bit quantization, indicating the efficiency of our ISP even

under aggressive quantization scenarios. Compared with the

state-of-the-art works [19], [20], and [21], our ISP achieves

5.87%, 1.66%, and 0.97% network accuracy improvements in

8-bit quantization, and 0.9%, 0.47%, and 0.22% network

accuracy improvements in 12-bit quantization, respectively.

B. Evaluation of SFZD

Exploiting the sparsity derived from the combination of

softmax and quantization can further enhance hardware energy

efficiency by eliminating redundant operations. To achieve this,

we employ linear quantization to perform fixed-point 12-bit and

8-bit quantization on the MobileViT-xxs network, respectively.

To accommodate the proposed SFZD algorithm, we fix the min

and max values when quantizing the softmax function. Among

the existing works, only [19] features the sparsity detection for

the softmax function. We compare the proposed SFZD with

[19] in terms of sparsity utilization, which is the ratio of the

sparsity utilized by the algorithm and the sparsity provided by

the network quantization. The results are listed in Table I.

TABLE I

SPARSITY UTILIZATION RATIO OF DIFFERENT METHODS

MobileViT-xxs JSSC 2023 [19] Ours

12b 42.49% 100%

8b 30.31% 100%

The sparsity extraction method of [19] is based on (19),

which fails to fully utilize the sparsity offered by quantized

softmax. This is because [19] overlooks the sparsity brought by

∑ 𝑒𝑥𝑗−𝑥𝑚𝑎𝑥𝑁
𝑗=0 , which accounts for a substantial role in the

softmax sparsity assessment. The proportion of sparsity

generated by ∑ 𝑒𝑥𝑗−𝑥𝑚𝑎𝑥𝑁
𝑗=0 to the overall sparsity increases as

the size of Transformer-based networks decreases.

Consequently, the efficiency of the sparsity detection method in

[19] deteriorates in small sized networks. Our method takes

𝑙𝑛 (𝑆) into consideration and improves the sparsity utilization

ratio by 2.4× and 3.3× under 12-bit and 8-bit quantization,

respectively. The proposed SFZD not only eliminates redundant

calculations, but also reduces the hardware area cost. SFZD

constrains the input range and reduces the bit width for Stage1

and Stage3 in Fig. 2, which saves ~18% area in hardware.

Furthermore, SFZD ensures a fixed and identical input range

for Stage1 and Stage3, which allows for the reuse of the same

hardware modules and leads to further savings of ~30% area.

After evaluation, SFZD only occupies 2.5% hardware area in

the whole architecture while contributing 19.2% power savings.

C. Hardware Implementation Results

To thoroughly analyze our proposed SoftAct architecture,

two versions are implemented in Verilog HDL: fix-point 16b

and fix-point 32b (the bit width of the partial sum in network

processing). The precision of the 16b version is consistent with

Tables I and Fig. 9, where the bit width of partial sum is also

16b. Due to the increased bit width, the 32b version has a better

precision than the 16b version by observing the MAE and MSE.

We synthesize these designs by Cadence Genus using the

TSMC 28-nm CMOS technology, then perform gate-level

simulations based on 12b quantized MobileViT-xxs data by

using Cadence NC-Sim. The VCD (value change dump) files

are dumped for power analysis. The results of our proposed

SoftAct are listed in Table II. To evaluate the hardware

architecture, we use three metrics: area efficiency (AE), energy

efficiency (EE), and overall efficiency (OE). The definitions for

Throughput and OE are

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝐹𝑟𝑒𝑞 × 𝑁𝑈𝑀. (24)

 𝑂𝐸 = 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡/(𝐴𝑟𝑒𝑎 × 𝑃𝑜𝑤𝑒𝑟). (25)

The Freq is the running frequency and NUM is the number of

inputs or outputs in hardware. In the 16b and 32b versions, the

hardware performance of the SoftAct is evaluated at two

operating frequencies: the maximum frequency and a frequency

of 500 MHz. The lower the bit width, the higher the maximum

frequency and the better the hardware metrics can be achieved.

For example, at 500 MHz, the 16b SoftAct outperforms the 32b

version in AE, EE, and OE by factors of 1.6×, 2.1×, and 3.4×,

respectively.

The proposed SoftAct architecture can support both softmax

and low-bit width Swish functions, which are inseparable due

to the high reconfigurability of the architecture. Alternatively,

the existing works only support the softmax function. To

evaluate the performance of SoftAct, we perform comparisons

with the state of the art optimized for the softmax function.

According to the layout shrinking rules of the foundries (for 65

nm, 40 nm, and 28 nm), the area is reduced by around 5.4×

(2.32) with the technology scaled from 65 nm to 28 nm and

reduced by around 2× (1.42) with the technology scaled from 40

nm to 28 nm. The supply voltage is reduced from 1.2 V to 0.9

V with the technology scaled from 65 nm to 28 nm and reduced

from 1.1 V to 0.9 V with the technology scaled from 40 nm to

28 nm. With the area and supply voltage scaling, the area

efficiency, energy efficiency, and overall efficiency of [13],

[32], and [34] can be approximately scaled into 28-nm

technology node as shown in Table II, which demonstrates that

SoftAct achieves the highest frequency and OE among the

Page 9 of 11 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

evaluated works. A 16b fixed-point softmax is implemented in

[32], which has lower power consumption than our proposed

SoftAct. However, our SoftAct achieves 51.1× and 5.5×

improvement in AE and OE, respectively, compared to [32].

[21] only considers the cell area without the interconnect area.

Meanwhile, there is no power information in [21]. The cell area

of our 16b SoftAct is 2.157×10-3 mm2 under maximum

frequency 1.85 GHz, with corresponding 858.6 G/(s·mm2) AE,

which is 1.2× better than [21]. The design in [13] comprises a

floating-point 12b softmax unit. Although with a smaller bit

width than our SoftAct, the area and power consumption of the

softmax unit in [13] are still significantly higher due to the

floating-point unit. [33] incorporates a 16b fixed-point softmax

module operating at a lower frequency than our SoftAct. Note

that the power consumptions given in both [13] and [33] are

derived from the entire network. If these works are analyzed

exclusively for the softmax function, the power consumption,

EE, and OE would appear less favorable. This is because the

softmax unit is possibly in the idle state for most of the time

during full network processing, leading to low power

consumption of the softmax unit. Despite these circumstances,

with our 16-bit SoftAct, we attain a higher operating frequency,

with 31× and 6.7× better AE as well as 1435× and 9× OE

compared to [13] and [33], respectively. We have implemented

the softmax structure of [19] in Verilog HDL using the same

28-nm CMOS technology and obtained the design metrics of

the softmax of [19]. The design in [19] supports softmax and

sparsity detection. However, the lack of input data constraint

necessitates high-segment linear fitting to ensure precision,

leading to high area consumption. Compared to [19], our

approach increases AE by 2.2×, EE by 1.9×, and OE by 4.2×

with higher softmax precision and network accuracy. [34]

proposes a 32b fix-point softmax architecture, whose area and

power consumption are unfavorable. Our proposed 32b SoftAct

architecture can achieve an operating frequency of up to 1.56

GHz, ensuring better area and power consumption, with an

improved OE of 174× compared to [34].

As shown in Fig. 10, under the maximum frequency, the

proposed 16-bit SoftAct architecture improves the area

efficiency by 31×, 53.2×, 20.2×, 153.2×, and 6.7×, compared

with [13], [34], [33], [32], and [19], respectively. Meanwhile,

to evaluate the performance in terms of area and power

consumption, the overall efficiency is compared. The proposed

16-bit SoftAct architecture improves the overall efficiency by

1435×, 532.8×, 6.2×, 3.8×, and 2.9×, compared with [13], [34],

[33], [32], and [19], respectively.

Fig. 10. The area efficiency and overall efficiency improvement compared with

the state of the art.

TABLE II

PERFORMANCES COMPARISON OF THE DIFFERENT HARDWARE ARCHITECTURES

 ICSICT

2018 [34]

GLSVLSI

2019 [32]

TCAS-II

2020 [21]

HPCA

2021 [13]

JSSC

2022 [33]

JSSC#

2023 [19]
SoftAct

Technology 65 nm 65 nm 28 nm 40 nm 28 nm 28 nm 28 nm

Function Softmax Softmax Softmax Softmax Softmax Softmax Softmax / Low-bit width Swish

Sparsity NA NA NA NA NA Softmax Softmax / Low-bit width Swish

Voltage [V] 1.2 1.2 0.9 1.1 1.0 1.1 0.9

BW/NUM 32/1 16/1 16/8 FP12/8 16/16 16/1 16/1 32/1

Frequency
[GHz]

1 0.5 1.64 1 0.24 0.51 0.5 1.85 0.5 1.56

Area

[mm2]
0.445 0.64

18.39

×10-3*
0.786 0.12

5.297

×10-3

2.326

×10-3

2.872

×10-3

3.746

×10-3

4.453

×10-3

Power Consumption
[mW]

333 0.82 NA 496.6† 1.06† 1.50 0.80 3.46 1.66 5.76

Throughput

[G/s]
1 0.5 13.12 8 3.84 0.51 0.5 1.85 0.5 1.56

Scaled Area Efficiency⁑
[G/(s·mm2)]

12.11 4.21 713.35* 20.78 31.90 96.28 214.96 644.85 133.48 350.33

Scaled Energy Efficiency⁑

[G/(s·mW)]
2.88×10-2 5.84 NA 4.91×10-2† 3.61† 0.34 0.63 0.54 0.301 0.27

Scaled Overall Efficiency⁑
[G/(s·mm2·mW)]

0.35 49.19 NA 0.13† 30.00† 64.14 270.05 186.48 80.38 60.82

BW: Bit width. NUM: Number of inputs or outputs. ‘’ represents the maximum frequency. ‘*’ represents the cell area without the interconnect area.

‘†’ means the power consumption is obtained from the simulation of the entire network. If only the softmax data are processed, the results are worse.

‘#’ represents the reimplemented work. ‘⁑’ Scaled to 28-nm technology node, according to “𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∝ 1/(𝐴𝑟𝑒𝑎 × 𝑉𝐷𝐷
2) ” derived in [35].

Page 10 of 11IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

11

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

VI. CONCLUSION

In this paper, an algorithm-hardware co-designed SoftAct

architecture is proposed to achieve various nonlinear functions

in convolution and attention co-designed Transformer-based

networks. To improve the softmax precision in hardware

implementation, an improved softmax algorithm with penalties

is proposed for log-sum-exp softmax. A stage-wise full zero

detection method is introduced to skip the redundant

computation in log-sum-exp softmax. A compact and

reconfigurable hardware architecture with a symmetric

detection and storage structured linear fitting module is

developed to achieve high precision and multiple nonlinear

functions. Benchmarked with the MobileViT-xxs network

classifying the ImageNet-1k dataset, the proposed improved

softmax with penalties algorithm achieves up to 99.29% MAE

and 99.77% MSE reductions in grouped set random test, and

5.87% network accuracy improvement compared with the

evaluated works. The proposed SoftAct architecture is

implemented in the TSMC 28-nm CMOS technology,

achieving up to 153.2× the area efficiency and 1435× overall

efficiency improvements among the state of the art, thereby

providing an attractive option for Transformer-based network

accelerators.

REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 1–11.

[2] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers for

image recognition at scale,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2020.

[3] W. Wang, X. Yang and J. Tang, “Vision transformer with hybrid shifted

windows for gastrointestinal endoscopy image classification,” IEEE
Trans. Circuits Syst. Video Technol., vol. 33, no. 9, pp. 4452-4461, Sept.

2023.

[4] H. Li, J. Xiao, M. Sun, E. G. Lim and Y. Zhao, “Transformer-Based
language-person search with multiple region slicing,” IEEE Trans.

Circuits Syst. Video Technol., vol. 32, no. 3, pp. 1624-1633, March 2022.

[5] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),

Oct. 2021, pp. 10012–10022.

[6] R. Ji, J. Li, L. Zhang, J. Liu and Y. Wu, “Dual transformer with multi-

grained assembly for fine-grained visual classification,” IEEE Trans.

Circuits Syst. Video Technol., vol. 33, no. 9, pp. 5009-5021, Sept. 2023.
[7] Q. Han et al., “On the connection between local attention and dynamic

depth-wise convolution,” in Proc. Int. Conf. Learn. Represent. (ICLR),

2022.
[8] X. Zhang, J. Wang, T. Wang and R. Jiang, “Hierarchical feature fusion

with mixed convolution attention for single image dehazing,” IEEE Trans.

Circuits Syst. Video Technol., vol. 32, no. 2, pp. 510-522, Feb. 2022.
[9] A. Gulati et al., “Conformer: Convolution-augmented transformer for

speech recognition,” in Interspeech, 2020.

[10] Y. Wang, Y. Qiu, P. Cheng and J. Zhang, “Hybrid CNN-Transformer
features for visual place recognition,” IEEE Trans. Circuits Syst. Video

Technol., vol. 33, no. 3, pp. 1109-1122, March 2023.

[11] H. Wu et al., “CvT: Introducing convolutions to Vision Transformers,” in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 22-31.

[12] S. Mehta and M. Rastegari, “MobileViT: light-weight, general-purpose,

and mobile-friendly Vision Transformer,” in Proc. Int. Conf. Learn.
Represent. (ICLR), 2022.

[13] H. Wang, Z. Zhang, and S. Han, “SpAtten: Efficient sparse attention

architecture with cascade token and head pruning,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit. (HPCA), Feb. 2021, pp. 97–110.

[14] C. Gao, S. Braun, I. Kiselev, J. Anumula, T. Delbruck, and S.-C. Liu,

“Real-time speech recognition for IoT purpose using a delta recurrent
neural network accelerator,” in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS), May 2019, pp. 1–5.

[15] F. Spagnolo, S. Perri, F. Frustaci, and P. Corsonello, “Energy-efficient

architecture for CNNs inference on heterogeneous FPGA,” J. Low Power
Electron. Appl., vol. 10, no. 1, p. 1, Dec. 2019.

[16] T. J. Ham et al., “A3: Accelerating attention mechanisms in neural

networks with approximation,” in Proc. IEEE Int. Symp. High-Perform.
Comput. Archit. (HPCA), Feb. 2020, pp. 328–341.

[17] R. Rizk, D. Rizk, F. Rizk, A. Kumar, and M. Bayoumi, “A resource-

saving energy-efficient reconfigurable hardware accelerator for BERT-
based deep neural network language models using FFT multiplication,”

in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2022, pp. 1675-

1679.
[18] B. Li et al., “Ftrans: energy-efficient acceleration of transformers using

FPGA,” in Proc. IEEE/ACM Int. Symp. Low Power Electron Design

(ISLPED), 2020, pp. 175-180.
[19] Y. Wang et al., “An energy-efficient Transformer processor exploiting

dynamic weak relevances in global attention,” IEEE J. Solid-State

Circuits, vol. 58, no. 1, pp. 227-242, Jan. 2023.

[20] B. Yuan, “Efficient hardware architecture of softmax layer in deep neural

network,” in Proc. IEEE Int. System-on-Chip Conf. (SOCC), Sep. 2016,

pp. 323–326.
[21] D. Zhu, S. Lu, M. Wang, J. Lin, and Z. Wang, “Efficient precision-

adjustable architecture for softmax function in deep learning,” IEEE

Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 12, pp. 3382–3386, Dec.
2020.

[22] A. Kagalkar and S. Raghuram, “CORDIC based implementation of the

softmax activation function,” in Proc. Int. Symp. VLSI Design Test
(VDAT), Jul. 2020, pp. 1–4.

[23] F. Spagnolo, S. Perri, and P. Corsonello, “Aggressive approximation of

the softmax function for power-efficient hardware implementations,”
IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, pp. 1652–1656,

Mar. 2022.

[24] J. R. Stevens, R. Venkatesan, S. Dai, B. Khailany, and A. Raghunathan,

“Softermax: Hardware/software co-design of an efficient softmax for

transformers,” in Proc. ACM/IEEE Design Automation Conference

(DAC), Dec. 2021.
[25] Y. Zhang et al., “Base-2 softmax function: suitability for training and

efficient hardware implementation,” IEEE Trans. Circuits Syst. I, Reg.

Papers, pp. 3605–3618, Sep. 2022.
[26] S. R. Chiluveru, Gyanendra, S. Chunarkar, M. Tripathy, and B. K.

Kaushik, “Efficient hardware implementation of DNN-based speech

enhancement algorithm with precise sigmoid activation function,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 11, pp. 3461–3465, Nov.

2021.

[27] M. Barthel, J. Rust, J. Gustafson, and S. Paul, “Improving the precision
of SORN arithmetic by introducing fused operations,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS), May 2022, pp. 258-262.

[28] H. Sun et al., “A universal method of linear approximation with
controllable error for the efficient implementation of transcendental

functions,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 1, pp.
177–188, Jan. 2020.

[29] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, "I-BERT:

Integer-only BERT quantization", in Proc. Int. Conf. Mach. Learn.
(ICML), pp. 5506-5518, Jul. 2021.

[30] A. Howard et al., “Searching for MobileNetV3,” in Proc. IEEE/CVF Int.

Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1314-1324.
[31] Distiller. Accessed: Sep. 8, 2023. [Online]. Available:

https://github.com/IntelLabs/distiller.

[32] G. Du, C. Tian, Z. Li, D. Zhang, Y. Yin, and Y. Ouyang, “Efficient
softmax hardware architecture for deep neural networks,” in Proc. Great

Lakes Symp. VLSI, May 2019, pp. 75–80.

[33] F. Tu et al., “TranCIM: Full-digital bitline-transpose CIM-based sparse
Transformer accelerator with pipeline/parallel reconfigurable modes,”

IEEE J. Solid-State Circuits, vol. 58, no. 6, pp. 1798-1809, June 2023.

[34] Q. Sun et al., “A high speed softmax VLSI architecture based on

basicsplit,” in Proc. IEEE Int. Conf. Solid-State Integr. Circuit Technol.

(ICSICT), 2018, pp. 1–3.

[35] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “How to understand and
evaluate deep learning processors: TOPS/W (alone) considered harmful,”

IEEE Solid State Circuits Mag., vol. 12, no. 3, pp. 28-41, Aug. 2020.

Page 11 of 11 IEEE Transactions on Circuits and Systems for Video Technology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

