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SoftAct: A High-Precision Softmax Architecture for 

Transformers Supporting Nonlinear Functions  
 

Yuzhe Fu, Changchun Zhou, Tianling Huang, Eryi Han, Yifan He, Member, IEEE, and Hailong Jiao, Member, IEEE 
 

Abstract—Transformer-based deep learning networks are 

revolutionizing our society. The convolution and attention co-

designed (CAC) Transformers have demonstrated superior 

performance compared to the conventional Transformer-based 

networks. However, CAC Transformer networks contain various 

nonlinear functions, such as softmax and complex activation 

functions, which require high precision hardware design yet 

typically with significant cost in area and power consumption. To 

address these challenges, SoftAct, a compact and high-precision 

algorithm-hardware co-designed architecture, is proposed to 

implement both softmax and nonlinear activation functions in 

CAC Transformer accelerators. An improved softmax algorithm 

with penalties is proposed to maintain precision in hardware. A 

stage-wise full zero detection method is developed to skip 

redundant computation in softmax. A compact and reconfigurable 

architecture with a symmetrically designed linear fitting module is 

proposed to achieve nonlinear functions. The SoftAct architecture 

is designed in an industrial 28-nm CMOS technology with the 

MobileViT-xxs network as the benchmark. Compared with the 

state of the art, SoftAct improves up to 5.87% network accuracy, 

153.2× area efficiency, and 1435× overall efficiency. 

 
Index Terms—Transformer-based networks, nonlinear functions, 

softmax, sparsity detection, overall efficiency.  

I. INTRODUCTION 

RANSFORMER-BASED models have demonstrated 

remarkable success in a range of artificial intelligence 

(AI) tasks, surpassing recurrent neural networks 

(RNNs) and convolutional neural networks (CNNs) in various 

domains, such as natural language processing and computer 

vision [1], [2], [3], [4], [5], [6]. The conventional Transformer 

networks rely on the attention mechanism and are typically 

characterized by enormous model size and high computational 

complexity (e.g., 307 M parameters and 190.7 G FLOPs in ViT-

L [2]), making them infeasible for implementation on resource-

constrained devices. A novel approach that combines attention 

with convolution has emerged in the field of lightweight 

Transformer networks [7], [8], [9], [10], [11], [12]. This 

convolution and attention co-designed (CAC) Transformer 

networks have the potential to significantly reduce the number 

of network parameters and computational complexity (e.g., 

133.5× parameters and 272× FLOPs reductions in MobileViT 

[12] compared with ViT-L) while maintaining high accuracy, 

leading to better chance of deployment on edge devices. 

Unfortunately, these networks utilize a great number of 

nonlinear functions. These nonlinear functions have complex 

mathematical forms and are unfriendly for hardware 

implementation. For instance, every attention layer in the 

network includes a softmax operation. The convolution layers 

also have other nonlinear activation functions, such as Swish in 

MobileViT and both Swish and GeLU in Conformer [9]. In the 

inference stage, the delay of the nonlinear functions becomes 

significant due to the high data access to DRAM and low data 

reuse rate in hardware. For example, the softmax delay in GPT-

2 accounts for ~33% of the overall network delay [13]. 

Processing those nonlinear functions therefore becomes a 

bottleneck when applying hardware acceleration to the CAC 

Transformer networks.  

The hardware implementation of nonlinear functions is 

complex and challenging, especially for the softmax function. 

This is because softmax involves both exponential and division 

operations. Existing approaches do not utilize reconfigurable 

architecture, but instead rely on designing individual circuits to 

carry out these operations, which usually cost expensive area 

and high power consumption to support high precision in 

hardware implementation. Some works [14], [15] directly use 

CPU to implement nonlinear functions, which introduces 

significant delays in data communication. For the existing 

Transformer hardware architecture, Ham [16], Rizk [17], and 

Li [18] utilize the look-up table (LUT) or piecewise linear 

fitting (PLF) to implement the exponential function and rely on 

an area-expensive division unit to perform division operations. 

In [13], the softmax function is directly implemented based on 

floating-point (FP) computing units to provide high precision, 

yet also with serious area and power cost. A fixed-point softmax 

unit that utilizes LUT to implement the exponential function 

and division is proposed in [19], which incorporates a sparsity 

detection algorithm to reduce the number of softmax 

operations. However, the reconfigurability of the hardware is 

low, and the algorithm may not fully utilize the sparsity 

provided by the softmax function. 

The aforementioned works are all based on the original 

softmax function, with no significant innovation in the 

hardware architecture. Some other researchers have modified 

the softmax function and proposed novel hardware 

architectures. The log-sum-exp softmax is proposed in [20] to 

avoid the complicated division operation through logarithmic 

conversion, yet still with high hardware cost. A constant 

multiplier strategy is proposed in [21] to calculate the exp-log-

sum function within adjustable precision based on [20]. 

T 
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However, due to the approximate implementation method, there 

is still considerable room for improvement in terms of 

precision. Other approximate strategies [22], [23] are also 

proposed, such as the Coordinated Rotation Digital Computer 

(CORDIC) algorithm and Maclaurin series. However, 

sacrificing precision for better hardware performance can result 

in a significant reduction in network inference accuracy, which 

may not be acceptable for a variety of applications. Some works 

[24], [25] simplify the mathematical mechanism of softmax 

from base-e to base-2 to reduce the complexity of hardware 

design. However, mainstream Transformer-based networks do 

not utilize the base-2 softmax method. 

Therefore, there are three issues with the existing softmax 

works: low precision in hardware implementation, high power 

consumption, and high area cost. To address these issues, we 

propose SoftAct, an algorithm and hardware co-designed 

architecture enabling efficient processing of softmax and 

nonlinear activation functions in network inference. To 

maintain the precision, we propose the improved softmax with 

penalties algorithm, which is based on the log-sum-exp format 

and includes penalty terms in linear fitting to mitigate the error 

caused by approximate calculations. To reduce the power 

consumption, we introduce a stage-wise full zero detection 

algorithm to avoid redundant operations in softmax with no loss 

in precision. Furthermore, to save the hardware area, we 

propose a reconfigurable hardware architecture to support both 

softmax and nonlinear activation functions. To verify the 

feasibility of our algorithm in the Transformer-based network, 

we use the MobileViT-xxs network, which contains both 

softmax and Swish activation functions, running with 

ImageNet-1k as the benchmark. The proposed SoftAct is 

designed and simulated by using an industrial 28-nm CMOS 

technology. Compared with the state of the art, the proposed 

SoftAct achieves up to 5.87% higher network accuracy, 153.2× 

higher area efficiency, and 1435× higher overall efficiency. 

The rest of this paper is organized as follows. A brief review 

of the background and related works is given in Section II. The 

proposed algorithmic optimizations are presented in Section III. 

In Section IV, the proposed SoftAct hardware architecture is 

detailed. The experimental results of the proposed SoftAct are 

shown in Section V. This paper is summarized in Section VI.  

II. BACKGROUND AND RELATED WORKS 

In this section, the fundamental concepts of CAC 

Transformer networks, softmax function, and Swish function 

are provided. The existing hardware implementations of 

softmax and Swish functions are also introduced. 

A. CAC Transformer Backbone and Self-Attention Mechanism 

The recently emerged CAC Transformer models have made 

a breakthrough in the field of lightweight Transformer-based 

networks. The classical backbone of the CAC Transformer 

model is shown in Fig. 1(a), which is composed of a series of 

convolution and attention layers. The input data first passes 

through convolution layers to extract features, which are 

utilized as the input to the attention layers. In MobileViT [12], 

the nonlinear functions play critical roles. The softmax function 

is used in every attention layer. The Swish activation function 

is utilized in every convolution layer and the multi-layer 

perceptron (MLP) layer that follows the attention layer. The 

details of the attention layer with inputs Q, K, and V are shown 

in Fig. 1(b). Q×KT is firstly calculated and followed by softmax 

with quantization to generate Pq. Then Pq×V is used to get the 

output data. The softmax function normalizes P to a range of 

(0, 1). Transformer networks typically employ 12-bit 

quantization to maintain network accuracy. Lower-bit 

quantization (such as 8-bit) tends to cause an accuracy loss 

(>1%) [13], [19]. After quantization, the near-zero values after 

softmax are rounded to 0, which leads to sparsity. Based on our 

statistical analysis of MobileViT-xxs, softmax generates 

19.63% sparsity under 12b quantization, and 67.40% under 8b 

quantization, which can be explored for acceleration and power 

savings in hardware implementation.  

 
Fig. 1. (a) The backbone of CAC Transformer. (b) The mechanism of self-

attention. (c) The curve of the Swish activation function. 

The mathematical form of the Swish function is expressed in 

(1), with a wide input range and complex mathematical form. 

The existing works either use high resource cost and power 

consumption to meet the accuracy requirements of the Swish 

function [26], or sacrifice precision by simplifying calculations, 

in exchange for lower hardware complexity [27]. 

 𝑆𝑤𝑖𝑠ℎ(𝑥) = 𝑥 ∙ 𝑠𝑖𝑔𝑚𝑜𝑑(𝑥) =
𝑥∙𝑒𝑥

1+𝑒𝑥.         (1) 

As shown in Fig. 1, when x is smaller than -3, the Swish output 

approaches 0. When x is greater than 3, the Swish output 

approaches x. By utilizing this observation, the complexity of 

the Swish function can be significantly reduced, which could be 

preferable for hardware implementation. 

B. The Original Softmax Function 

The softmax function is commonly utilized as a 

normalization function in deep neural networks. The input to 

the softmax layer is an N-sized vector 𝑋 = [𝑥0, 𝑥1, … , 𝑥𝑁−1]. 
The mathematical form of the softmax function is expressed in 

(2). The softmax function is invariant to the subtraction 

operation with 𝑥𝑖. Therefore, the value of 𝑥𝑖 is often subtracted 
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by 𝑥𝑚𝑎𝑥 , which is the maximum value in X, to reduce the 

computational complexity. 

 𝑓(𝑥𝑖) =
𝑒𝑥𝑝(𝑥𝑖)

∑ 𝑒𝑥𝑝(𝑥𝑗)𝑁−1
𝑗=0

=
𝑒𝑥𝑝(𝑥𝑖−𝑥𝑚𝑎𝑥) 

∑ 𝑒𝑥𝑝(𝑥𝑗−𝑥𝑚𝑎𝑥)
 𝑁−1

𝑗=0

.          (2) 

[13], [16], [17], [18], [19] adopt (2) and use a two-stage 

hardware architecture that typically comprises an exponential 

unit and a division unit. However, these works can only support 

the softmax function with high hardware cost. Take [19] as an 

example, 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥)  and 1/ ∑ 𝑒𝑥𝑝(𝑥𝑗 − 𝑥𝑚𝑎𝑥)𝑁−1
𝑗=0  are 

implemented based on 16-segment PLF. These two terms are 

multiplied to obtain the result of the softmax function. 

However, the input range of this method is not constrained. A 

large number of segments for PLF is therefore required to 

ensure high precision, thereby resulting in high hardware area 

cost. 

C. Log-Sum-Exp Softmax Function 

The log-sum-exp softmax is a simplified softmax algorithm 

which is first proposed in [20] and expressed as  

     𝑓(𝑥𝑖) =
𝑒𝑥𝑝(𝑥𝑖−𝑥𝑚𝑎𝑥) 

𝑒𝑥𝑝 (𝑙𝑛(∑ 𝑒𝑥𝑝(𝑥𝑗−𝑥𝑚𝑎𝑥)𝑁−1
𝑗=0 ))

= 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥 − 𝑙𝑛(∑ 𝑒𝑥𝑝(𝑥𝑗 − 𝑥𝑚𝑎𝑥)
 𝑁−1

𝑗=0 )). 
 (3) 

The main idea is to eliminate the division by incorporating the 

logarithm function and reusing the exponential function, which 

is hardware-friendly. Various methods have been proposed for 

implementing the exponential and logarithmic functions in 

hardware, such as CORDIC implementation [22] and linear 

approximation [28]. However, most of these methods face 

challenges such as large area, low operating frequency, or 

precision loss, and therefore cannot achieve a good balance 

between energy efficiency and precision.  

A hardware-friendly implementation of exponential and 

logarithmic functions is proposed in [21], which converts them 

into base-2 expressions through constant multiplication. The 

mathematical transformation for the exponential function is  

 𝑒𝑥𝑝(−𝑥𝑖) = 2−𝑥𝑖 ∙𝑙𝑜𝑔2(𝑒), 𝑥𝑖 ≥ 0.         (4) 

By dividing the exponent term 𝑥𝑖 ∙ log2(𝑒) into two parts, an 

integral part 𝑛𝑖  and a fractional part 𝑓𝑖 , (4) can be further 

simplified as 

 
𝑒𝑥𝑝(−𝑥𝑖) = 2−(𝑛𝑖+𝑓𝑖) = 2−𝑓𝑖 ∙ 2−𝑛𝑖

= 2−𝑓𝑖 ≫ 𝑛𝑖 , 𝑓𝑖 ∈ [0, 1).
         (5) 

The exponential function is thereby converted to a constant 

multiplication, 2−𝑓𝑖, and a shift operation, which are easy for 

hardware implementation.  

The mathematical transformation for logarithmic function is  

 𝑙𝑛(𝑆) = 𝑙𝑛(2) ∙ 𝑙𝑜𝑔2(𝑆),         (6) 

where 𝑆 = ∑ 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥)𝑁−1
𝑖=0  and 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥) ∈

(0, 1]. Suppose 𝑆 = 𝑢 ∙ 2𝑣 , where u is a real number in [1, 2) 

and v is an integer. Then the logarithmic function can be 

simplified as 

𝑙𝑛(𝑆) = 𝑙𝑛(2) ∙ 𝑙𝑜𝑔2(𝑢 ∙ 2𝑣)                        (7) 

By utilizing log2(𝑢) ≈ 𝑢 − 1 , 𝑢 ∈ [1, 2) , (7) is further 

simplified as 

 𝑙𝑛(𝑆) = 𝑙𝑛(2) ∙ (𝑣 + 𝑢 − 1)          (8) 

(8) can reduce the hardware complexity but introduce ~14.78% 

average error in the implementation of 𝑙𝑜𝑔2(𝑢) , which 

negatively impacts the softmax precision. The constant 

multiplication in hardware, which is based on approximate 

calculations, further degrades the softmax precision. Therefore, 

there is still a large room for performance improvement in [21]. 

The accuracy of Transformer-based models is highly 

sensitive to nonlinear functions, thereby requiring high-

precision hardware implementations [29]. However, most of the 

existing works compromise the precision of softmax for higher 

frequency and lower hardware complexity, while not 

supporting any other functions. Therefore, we propose an 

algorithm-hardware codesigned SoftAct architecture to address 

the above challenges. In terms of algorithm, we propose an 

improved softmax with penalties algorithm to maintain the 

softmax precision in hardware implementation. Furthermore, 

we introduce a stage-wise full zero detection algorithm to 

exploit the sparsity caused by quantization of softmax to avoid 

redundant operations. In terms of hardware, we design a 

compact and reconfigurable hardware architecture, which 

supports various nonlinear functions with low hardware cost. 

While many existing works verify their approaches using 

simple CNNs, these methods often fail on Transformer-based 

networks. We employ the MobileViT-xxs network as our 

benchmark to affirm the feasibility of our proposed methods in 

Transformer-based networks. 

III. IMPROVED ALGORITHMS FOR SOFTMAX AND SWISH 

In this section, the software innovations of the proposed 

SoftAct are introduced. Three algorithmic optimization 

techniques are proposed to improve the precision of the softmax 

function and enable the reconfigurable hardware design to 

support the Swish function. Firstly, to overcome the precision 

degradation caused by the approximate calculations in 

hardware, an improved softmax function with penalties is 

proposed. Secondly, a stage-wise full zero detection algorithm 

is introduced to eliminate redundant calculations during 

softmax operations. Thirdly, to support various nonlinear 

functions, a unified computation framework that incorporates a 

low-bit-width Swish is proposed.  

A. Improved Softmax with Penalties (ISP)  

The high-precision hardware implementation of softmax 

encounters two main challenges. Firstly, the input range of 

exponential function and division in traditional softmax is large, 

posing challenges for accurate calculation even with a large-

segment PLF. Secondly, although the existing log-sum-exp 

softmax algorithm saves division and constrains the input 

range, the hardware implementation introduces errors caused 

by approximate constant multiplications. Simply increasing the 

bit width of the system results in a small accuracy gain 

compared to the caused significant bandwidth and area losses 

to the hardware. For instance, increasing the bit width from 16b 

to 32b can reduce the mean average error (MAE) of softmax by 

20%, but with a 61% area overhead. Therefore, we propose an 
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improved softmax with penalties (ISP), which is based on the 

log-sum-exp softmax to constrain the input range. Furthermore, 

we introduce penalty terms by incorporating the error terms 

caused by the approximate constant calculation into (4) and (7). 

These penalty terms are then used to correct the coefficients of 

PLF, thus reducing the MAE by up to 99.29% in 16b as shown 

in Section V-A with nearly no area overhead. The details of ISP 

are shown below. 

The original softmax is firstly transformed into (3), with two 

exponential functions and one logarithmic function. When 

implementing the exponential function, the error is defined as 

 𝑒𝑟𝑟0 = 𝑙𝑜𝑔2(𝑒) − 𝑙𝑜𝑔2(𝑒)ℎ,         (9) 

where 𝑙𝑜𝑔2(𝑒) is the full precision value and 𝑙𝑜𝑔2(𝑒)ℎ  is the 

approximate value obtained by the hardware. By introducing 

𝑒𝑟𝑟0 into (4), we can obtain 

 
𝑒𝑥𝑝(−𝑥𝑖) = 2−𝑥𝑖∙(𝑙𝑜𝑔2(𝑒)ℎ+𝑒𝑟𝑟0)

= 2−𝑥𝑖∙𝑒𝑟𝑟0 × 2−𝑥𝑖 ∙𝑙𝑜𝑔2(𝑒)ℎ .
         (10) 

Suppose −𝑥𝑖 𝑙𝑜𝑔2(𝑒)ℎ = −(𝑛𝑖 + 𝑓𝑖) , where 𝑛𝑖  is the integer 

part and 𝑓𝑖  is the fractional part. The exponential calculation 

can be converted as 

   𝑒𝑥𝑝(−𝑥𝑖) = 2
−𝑒𝑟𝑟0∙(𝑛𝑖+𝑓𝑖)

𝑙𝑜𝑔2(𝑒)ℎ × 2−(𝑛𝑖+𝑓𝑖)

= 2
−𝑛𝑖∙

𝑒𝑟𝑟0
𝑙𝑜𝑔2(𝑒)ℎ × 2

−𝑓𝑖∙(1+
𝑒𝑟𝑟0

𝑙𝑜𝑔2(𝑒)ℎ
)

≫ 𝑛𝑖,

 (11) 

where ≫ is a right shift operation. There are two error terms in 

(11), where 2
−𝑓𝑖∙(

𝑒𝑟𝑟0
𝑙𝑜𝑔2(𝑒)ℎ

)
 represents the effect of 𝑒𝑟𝑟0  on the 

fractional part, and 2
−𝑛𝑖∙

𝑒𝑟𝑟0
𝑙𝑜𝑔2(𝑒)ℎ reflects the impact of 𝑒𝑟𝑟0 on 

the integer part. Incorporating these error terms into the PLF 

can complete the correction process. Suppose the internal 

penalty 𝑃𝑖𝑛 =
𝑒𝑟𝑟0

𝑙𝑜𝑔2(𝑒)ℎ
 and overall penalty 𝑃𝑜𝑣 = 2

−𝑛𝑖∙
𝑒𝑟𝑟0

𝑙𝑜𝑔2(𝑒)ℎ as 

shown in (12). Note that 𝑃𝑖𝑛  is determined by 𝑙𝑜𝑔2(𝑒)ℎ and 𝑃𝑜𝑣  

is determined by 𝑃𝑖𝑛  and 𝑛𝑖 . We introduce an external 

coefficient 𝑝0  to replace 𝑛𝑖 , thereby achieving the idea of 

manually customizing the penalty strength of 𝑃𝑜𝑣  by adjusting 

𝑝0. Therefore, 𝑃𝑜𝑣 = 2−𝑝0∙𝑃𝑖𝑛. The optimal value for 𝑝0 can be 

iteratively determined through software-based statistical 

analysis of input data. Then, by performing PLF on 

2−𝑓𝑖∙(1+𝑃𝑖𝑛) , we can get 

 
𝑒𝑥𝑝𝑝0

(−𝑥𝑖) = 𝑃𝑜𝑣 × 2−𝑓𝑖∙(1+𝑃𝑖𝑛) ≫ 𝑛𝑖

= 𝑃𝑜𝑣 × (𝑘 ∙ 𝑓𝑖 + 𝑏) ≫ 𝑛𝑖 ,
     (12) 

where k and b represent the coefficients after linear fitting. 

The high-precision logarithmic function is also implemented 

based on PLF, similar to the implementation of the exponential 

function. Firstly, the error 𝑒𝑟𝑟1 is defined as 

 𝑒𝑟𝑟1 = 𝑙𝑛(2) − 𝑙𝑛(2)ℎ, (13) 

where 𝑙𝑛(2) represents the full-precision value and 𝑙𝑛(2)ℎ 

represents the approximate value used in hardware. After 

introducing 𝑒𝑟𝑟1 into (7), 

 
𝑙𝑛(S) = (𝑙𝑛(2)ℎ + 𝑒𝑟𝑟1) ∙ 𝑙𝑜𝑔2(𝑢 ∙ 2𝑣)

= (𝑙𝑛(2)ℎ + 𝑒𝑟𝑟1) ∙ 𝑣 + 𝑙𝑛(2) ∙ 𝑙𝑜𝑔2(𝑢), 
       (14) 

where 𝑢 and 𝑣  are explained in Section II-C. By performing 

PLF on 𝑙𝑜𝑔2(𝑢), we obtain 

          𝑙𝑛𝑝1
(𝑆) = 𝑙𝑛(2)ℎ ∙ 𝑣 + 𝑙𝑛(2) ∙ (𝑘′ ∙ 𝑢 + 𝑏′) + 𝑃𝑙𝑛 , (15) 

where the logarithmic penalty term 𝑃𝑙𝑛 = 𝑒𝑟𝑟1 ∙ 𝑣 . The 

coefficients k’ and b’ are obtained by linear fitting. 𝑒𝑟𝑟1  is 

determined by 𝑙𝑛(2)ℎ . We introduce another external 

coefficient 𝑝1 to replace 𝑣 and to manually adjust the penalty 

strength of 𝑃𝑙𝑛 . 𝑝1 is determined by analyzing the range of input 

data. Therefore, 𝑃𝑙𝑛 = 𝑒𝑟𝑟1 ∙ 𝑝1 , which can be determined 

before hardware implementation. To sum up, the final 

expression of ISP is 

          𝑓𝑝0𝑝1
(𝑥𝑖) = 𝑒𝑥𝑝𝑝0

(𝑥′𝑖 − 𝑙𝑛𝑝1
(∑ 𝑒𝑥𝑝𝑝0

(𝑥′𝑗)𝑁−1
𝑗=0 )), (16) 

where 𝑥′𝑖 = 𝑥𝑖 − 𝑥𝑚𝑎𝑥. 

For the determination of 𝑝0  and 𝑝1 , we have made the 

following optimizations. If the input data range is fixed, the 

optimal values of 𝑝0 and 𝑝1 can be determined by an iterative 

algorithm. However, for real network data, the data ranges can 

vary significantly among different layers. Frequent changes in 

the values of  𝑝0  and 𝑝1  lead to changes in the linear fitting 

coefficients, which in turn require frequent updating in 

hardware and ultimately harm the latency and power 

consumption of the system. To solve this issue, we propose a 

constant-adaptive penalty algorithm. The constant penalty is 

applied to (12). 𝑃𝑖𝑛  is obtained by linear fitting with no impact 

on the latency and power consumption of the hardware, while 

𝑃𝑜𝑣  is determined by 𝑝0 . Therefore, we set 𝑝0  as a constant 

number to fix k and b of the exponential function. For (15), 𝑃𝑙𝑛  

is determined by 𝑝1 and can be implemented through constant 

addition in hardware. We apply (17) as the adaptive penalty on 

𝑝1. 𝑡ℎ is the threshold value determined by the network data.  

 𝑝1 = {
0,  𝑖𝑓 𝑣 < 𝑡ℎ
𝑡ℎ,  𝑖𝑓 𝑣 ≥ 𝑡ℎ

 .         (17) 

By analyzing the real network data, it is found that the range 

of 𝑣  is [0, 6]. Therefore, we choose  𝑡ℎ = 3  in this case. By 

using the fixed and adaptive penalty algorithm, reloading the 

linear fitting coefficients of the softmax function is unnecessary 

when the input ranges vary, and the precision of the function is 

still maintained. 

Compared with the original function (2), we use the log-exp-

sum algorithm to avoid the division operation and constrain the 

input range of linear fitting. Furthermore, we introduce penalty 

terms to mitigate the errors caused by approximate constant 

multiplication, and external variables 𝑝0 and 𝑝1 to control the 

strength of the penalty terms, which are used for correcting 

linear fitting coefficients. 𝑝0  and 𝑝1  are determined by an 

iterative algorithm for a fixed input range, or by the constant-

adaptive penalty algorithm for a variable network data range. 

Therefore, the corrected coefficients, which are 𝑃𝑜𝑣 ∙ (𝑘, 𝑏)  in 

(12) and 𝑙𝑛(2) ∙ (𝑘′, 𝑏′)  in (15), are fixed before hardware 

implementation. ISP does not affect the hardware performance 

while improving precision. 

B. Stage-wise Full Zero Detection (SFZD)  

Global attention contains massive small attention scores [13], 

which are Q×KT in Fig. 1(b). The softmax layer normalizes 
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these scores to clarify the relevance of inputs, which 

exponentially reduces the small attention score to a near-zero 

number. After quantization, these near-zero numbers are 

rounded to 0, resulting in a sparse softmax. Skipping these zeros 

causes no accuracy loss while saving power consumption. We 

propose a stage-wise full zero detection (SFZD) algorithm 

based on log-sum-exp softmax to fully skip zeros in softmax. 

The conventional n-bit quantization method, as shown in Fig. 

2, first performs a range check on the input P to get its 𝑚𝑎𝑥 and 

𝑚𝑖𝑛 values. Then P is mapped to the quantization domain to 

obtain 𝑃𝑄, which is 0 when 

 
𝑃−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
< 2−𝑛. (18) 

P is the output of the softmax, whose range is [0, 1). Therefore, 

we can directly set 𝑚𝑎𝑥 = 1 and 𝑚𝑖𝑛 = 0 in (18). Substituting 

(3) into (18) with further simplification, we can obtain the core 

idea of SFZD: after n-bit quantization, if 𝑒𝑥𝑝(𝑖𝑛) < 2−𝑛, where 

𝑖𝑛 is the input value of the exponential function, the output of 

softmax is 0. The SFZD contains two-stage detection (Stage1 

and Stage3 shown in Fig. 2) in the log-sum-exp softmax to skip 

redundant computation. In Stage1, SFZD is applied before 

𝑒𝑥𝑖−𝑥𝑚𝑎𝑥 calculation as shown in (19). In Stage3, (20) is used to 

detect the sparsity of 𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥 − 𝑙𝑛(𝑆)).  

       𝑒𝑥𝑝(𝑥𝑖 − 𝑥𝑚𝑎𝑥) < 2−𝑛 ⇒ 𝑥𝑖 − 𝑥𝑚𝑎𝑥 < −𝑛 ∙ 𝑙𝑛(2). (19) 

 𝑥𝑖 − 𝑥𝑚𝑎𝑥 − 𝑙𝑛(𝑆) < −𝑛 ∙ 𝑙𝑛(2).             (20) 

 
Fig. 2. The mechanisms of quantization and stage-wise full zero detection. 

After evaluation in Section V-B, our proposed SFZD can 

fully utilize the sparsity provided by softmax to skip the 

redundant computations. Note that SFZD does not create new 

sparsity but rather leverages the existing sparsity, thereby not 

affecting the network accuracy. 

C. Unified Computation Framework 

The Swish activation function is shown in (1), which 

includes both multiplication and sigmoid calculations. Due to 

the complex mathematical expression, the Swish function is 

difficult to be directly implemented in hardware. To solve this 

issue, we propose a low-bit width Swish (LBS), which replaces 

the Swish function with (21) to constrain the input data range 

and reduce the bit width requirement based on a hardware-

friendly Swish (hswish) [30].  

               𝐿𝐵𝑆 = {

0,   𝑥 ∈ (−∞, −3)

𝑃𝐿𝐹(𝑥2 6⁄ + 𝑥 2⁄ ),  𝑥 ∈ [−3, 3] 
𝑥,   𝑥 ∈ (3, ∞)

. (21) 

For LBS, the range of input x is first checked. If 𝑥 < −3 or 

𝑥 > 3, no further calculation is needed. Therefore, LBS reduces 

the calculation range from ( −∞, ∞   of the original Swish 

function to [-3, 3] and achieves the low-bit width feature. When 

−3 ≤ 𝑥 ≤ 3 , a PLF is used to calculate 𝑥2 6⁄ + 𝑥 2⁄  . As the 

number of segments increases, the precision increases but with 

more hardware cost.  

We substitute LBS with different PLF configurations into the 

network for training and finally determine that 8-segment PLF 

for LBS, which is shown in Fig. 3, can guarantee network 

accuracy (<0.5% degradation). 

 
Fig. 3. Comparison between Swish and our 8-segment LBS. 

To accommodate both the softmax function and other 

nonlinear functions, we propose a unified computation 

framework for ISP and LBS in Algorithm 1. The method first 

configures the inner data flows according to the input Mode. 

Before the calculation, the sparsity is firstly calculated, which 

are Line 5 and Line 12 for ISP based on the SFZD, and Line 18 

for LBS in Algorithm 1, to skip the redundant operations. The 

computation process for ISP involves three stages. 

● Stage1: Detect sparsity, calculate 𝑃𝑜𝑣 × 2−𝑓𝑖∙(1+𝑃𝑖𝑛) in (12) 

and sum up 𝑒𝑥𝑝𝑝0
(𝑥𝑖

′), which are from Line 2 to Line 8. 

● Stage2: Calculate 𝑙𝑛𝑝1
(𝑆), which is Line 9. 

● Stage3: Repeat Stage1 except summing up 𝑒𝑥𝑝𝑝0
(𝑥𝑖

′) , 

which are Line 10 to Line 15. 

One stage is needed for LBS： 

● Stage4: Check the input range and get the corresponding 

output. If the input is in [-3, 3], then calculate 𝑥2 6⁄ + 𝑥 2⁄  

in (21), which are Line 17 to Line 21. 
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The calculation flows for the exponential function and 

logarithmic function in ISP are shown in Algorithm 2 and 

Algorithm 3, respectively. In Algorithm 2, a constant 

multiplication is initially performed on 𝑥𝑖  to drive 𝑛𝑖  and 𝑓𝑖 . 

Then 𝑒𝑥𝑝𝑝0(𝑥𝑖) is computed based on (12). In Algorithm 3, a 

leading one detector (LOD) is firstly used to find out the highest 

1-bit position, which is v in (14). Then, u is obtained through a 

shifting operation and 𝑙𝑛𝑝1(𝑆) is computed based on (15). The 

proposed ISP improves precision by refining the coefficients of 

linear fitting, without incurring additional computational 

overhead. These algorithms can be implemented by 

reconfiguring modules and data paths in hardware to save area 

cost. For example, the different linear fitting operations of the 

expp0, lnp1, and 8-segment LBS in Algorithm 1 can be computed 

by reconfiguring the linear fitting module. By leveraging these 

characteristics, we propose a novel hardware architecture that 

is compact and highly reconfigurable in Section IV. 

IV. HARDWARE ARCHITECTURE 

In this section, we design a compact and reconfigurable 

SoftAct architecture to support the efficient execution of the 

proposed improved softmax with penalties (ISP), stage-wise 

full zero detection (SFZD), and low-bit width Swish (LBS) 

algorithms. An overview of the SoftAct architecture is provided, 

followed by explanations of the reconfigurable data paths. To 

address the mismatching issues during different modes, we 

propose a symmetric detection and storage structure for a linear 

fitting module. Furthermore, the detailed structures of other 

modules are provided. 

A. The Overall Architecture 

According to the unified computation framework, the overall 

hardware architecture for SoftAct is designed and shown in Fig. 

4. The design mainly consists of a sparsity detection module, a 

linear fitting module, a LOD module, and an adaptive shifter. 

The sparsity detection module is responsible for implementing 

the proposed stage-wise full zero detection (SFZD) for ISP and 

range detection for LBS. The linear fitting module is used for 

computing nonlinear functions based on PLF, which is a core 

unit in this architecture. The adaptive shifter module is used for 

the shifting operations. 

 
Fig. 4. (a) The overall architecture for SoftAct. (b) Stages and configuration. 

To achieve a high frequency and reconfigurable architecture, 

there are five stages in the computation flow, as shown in Fig. 

4(b). Stage1 to Stage4 in Fig. 4(b) correspond to Stage1 to 

Stage4 in Algorithm 1, respectively. Each stage in Fig. 4(b) 

represents a different function and employs a different data 

flow. Stage0, called Idle, is responsible for receiving the linear 

fitting coefficients from external sources and storing them in the 

linear fitting module. When operating in the ISP mode, the 

SoftAct architecture executes from Stage1 to Stage3. Stage1 

with a four-stage pipeline is illustrated in Fig. 5(a). In the 

pipeline, the input is processed by the sparsity detection module 

in the first stage. This is followed by the constant multiplication 

and linear fitting modules in the second and third stages, 

respectively. In the final stage, the data is processed by the 

shifter module and sum up module to complete Algorithm 2 and 

the accumulation. The linear fitting module is used to calculate 

2𝑝0

−𝑓𝑖. If the sparsity detection module detects that the data meet 

the conditions specified in (19), subsequent operations are 

bypassed and Output is set to 0. The three-stage pipeline of 

Stage2 is illustrated in Fig. 5(b). The data stored in the register 

of the sum up module is utilized as the input data. This data, 

after passing through the LOD module and the shifter module 

in the first stage, is processed in the linear fitting module to 

perform  𝑙𝑜𝑔2(𝑢)𝑝1
 in Algorithm 3. Then, the adder unit in the 

sum up module is reused to complete the logarithmic function. 

Stage3 is the last stage in the ISP mode, as shown in Fig. 5(c) 

with a four-stage pipeline. The data flow of Stage3 is similar to 

Stage1 with few differences: the input and output paths are 

modified, the sparsity detection module achieves (20), and the 

sum up module is not used. There is one stage to implement the 

8-segment LBS, which is Stage4 as shown in Fig. 5(d) with a 

three-stage pipeline. Input is fed into the sparsity detection 

module to avoid redundant computations. The linear fitting 

module is reconfigured to implement the nonlinear function in 

(21). Therefore, a significant portion of modules in the SoftAct 
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architecture are reused multiple times to achieve various 

functions with minimal hardware cost. Thanks to the fixed and 

adaptive penalty algorithm in Section III-A, SFZD in Section 

III-B, and the symmetric detection and storage structure in 

Section IV-B, there is no need to return to Stage0 to update the 

linear fitting coefficients in the ISP mode. In contrast, the 

approach proposed in [21] requires updating the LUT of the 

exponential function for different stages, causing extra power 

consumption and system delay.  

B. The Symmetric Detection and Storage 

The linear fitting module is the core component in SoftAct to 

achieve nonlinear function calculations based on PLF. The 

linear fitting module mainly consists of an address detector, a 

Register File (RegFile), a penalty module, a multiplier, and an 

adder, as illustrated in Fig. 6(a). The address detector module 

generates the address to the RegFile module based on the input 

data. The RegFile module is used for storing and retrieving the 

linear fitting coefficients, which are then passed to the 

multiplier and the adder. The penalty module represents 𝑃𝑙𝑛  in 

(15). The NeedP signal refers to the control signal for the 

adaptive algorithm (17), which can be generated by checking 

the output of the LOD module. Since 𝑡ℎ = 3 is predetermined, 

the penalty module is considered a constant addition.  

We use 4-segment PLF to perform the calculation of 

exponential and logarithmic functions in ISP, and 8-segment 

PLF for LBS. This results in mismatching issues between the 

segmentation detection of input data and the loading of the PLF 

coefficients during different modes. For example, during ISP, 

the address detector module needs to detect four segments for 

exp and ln, whose inputs are in the range of [0, 1) and [1, 2), 

respectively. They are corresponding to two sets of four PLF 

coefficients. For LBS, eight segments need to be detected within 

the range [-3, 3] with eight PLF coefficients. To address this 

issue, we propose a symmetric detection and storage structure 

for the linear fitting module, which can achieve the 

aforementioned functions with minimal hardware cost, as 

shown in Fig. 6.  

 
Fig. 6. (a) The architecture of the linear fitting module (PD: position detector). 

(b) The mechanism of the symmetric detection and storage design. 
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Fig. 5. Configured data paths and detailed pipelines of major functions. (a) The 1𝑠𝑡 exponential calculation and sum up. (b) Logarithmic calculation. (c) The 2𝑛𝑑 

exponential calculation. (d) The 8-segment LBS operation. 
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The data adapter first generates h based on the input signals 

Mode and Stage. When Mode is ISP, h=0 for exp and h=1 for 

ln. Note that only the fractional data are needed for the 4-

segment detection within [0, 1) and [1, 2). Therefore, the data 

adapter extracts the fractional part of the Data to obtain data', 

which is passed to the [0, 1] position detector (PD) for both [0, 

1) and [1, 2) detection to obtain the position signal pos. When 

Mode is LBS, the data adapter obtains h based on the sign bit of 

Data and takes its absolute value to get data’, which is in the 

range of [0, 3]. Consequently, only one 4-segment detector [0, 

3] PD is required and generates the pos signal for 8-segment 

detection. Finally, h and pos are concatenated to get the address 

information addr, which is then passed to the RegFile module. 

The RegFile stores the corresponding k and b symmetrically, as 

shown in Fig. 6(b), to accomplish all the required functions. 

C. The LOD Module and Adaptive Shifter Module 

The LOD module is used to detect the position of the highest 

1-bit position in the input data. We optimize this module based 

on the binary search algorithm, as illustrated in Fig. 7 by using 

an example with 8-bit input In and a 3-bit output Out. Compared 

to the conventional LOD structure, the proposed binary search 

structure reduces the computational complexity from O(n  to 

O(log n , thus effectively reducing the latency.  

 
Fig. 7. The architecture of the LOD based on the binary search algorithm. 

The adaptive shifter module is reused multiple times when 

implementing the softmax function. The module has two input 

ports: data and num, realizing the function of data >> num, 

where num is a variable. We implement this unit based on the 

barrel shifter structure, as shown in Fig. 8 with an example of 

3-bit num.  

 
Fig. 8. The architecture of the adaptive shifter. 

V. EXPERIMENTAL RESULTS 

In this section, the proposed SoftAct is evaluated at both the 

software and hardware levels. In the software implementation, 

we use PyTorch to realize the proposed algorithms, perform 

analysis, and compare ISP and SFZD with the state of the art in 

terms of algorithm precision, network accuracy, and sparsity 

utilization rate. Then we evaluate and compare the area and 

power consumption of the proposed SoftAct architecture with 

the state of the art. 

A. Analysis of ISP Precision and Network Accuracy 

For the existing method [21], several sets of random values 

with different ranges following a uniform distribution are 

chosen as the input data of softmax.  However, the results of 

this method are unstable due to insufficient randomness within 

each set. For instance, the algorithm may perform well under 

certain random conditions, but poorly under others. To address 

this issue, we propose a more rigorous testing method, namely 

grouped set random test, to eliminate the instability. We use 50 

groups of four different sets as the input data. Each set contains 

5000 random values in different ranges, which are denoted as 

rand1, rand5, rand10, and rand100. For instance, the rand10 set 

consists of 5000 randomly selected points in the interval [-10, 

10] that adhere to a uniform distribution. To compare the results 

with other algorithms, we use two metrics: the mean absolute 

error (MAE) and the mean square error (MSE). 

 𝑀𝐴𝐸 =
1

𝑔
∑ (

1

𝑛
∑ |𝑜𝑎 − 𝑜𝑡|)𝑛

𝑗=1
𝑔
𝑖=1 ,         (22) 

 𝑀𝑆𝐸 =
1

𝑔
∑ (

1

𝑛
∑ (𝑜𝑎 − 𝑜𝑡)2).𝑛

𝑗=1
𝑔
𝑖=1          (23) 

𝑜𝑎  is the output value of proposed algorithms, 𝑜𝑡  is the 

theoretical value of the softmax function, 𝑛 is the number of 

points in each set, and 𝑔 is the group number. A lower MAE 

indicates consistent precision, while a lower MSE emphasizes 

the proficiency of the method in mitigating large error.  

The MAE and MSE comparisons between ISP and the latest 

three works under 50-group random data are shown in Fig. 9. 

We reduce 99.29%, 97.87%, and 88.89% MAE and 99.76%, 

99.66%, and 97.74% MSE compared to [19], [20], and [21], 

respectively, in grouped set random test. The softmax method 

in [19], which is based on the original softmax, is set as the 

baseline softmax. Compared with the baseline, the 

improvement can be attributed to two factors. Firstly, the log-

sum-exp format of ISP saves the division operation and 

constrains the data range for PLF, which reduces 66.44% MAE 

and 30.56% MSE compared to the baseline. Secondly, the 

introduced penalty algorithm in ISP effectively reduces errors 

caused by approximate constant multiplication, thereby further 

reducing 97.87% MAE and 99.66% MSE compared to only 

using the log-sum-exp format. 

 
Fig. 9. The MAE, MSE, and network accuracy comparison of different softmax 

methods. 

To compare the proposed algorithm with the state-of-the-art 

algorithms on the CAC Transformer network, we implement 
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them on the MobileViT-xxs for verification. The open-source 

tool Distiller [31] is used for quantization and retraining 

MobileViT-xxs to recover the accuracy. The highest network 

accuracy we can achieve under different methods (12-bit and 8-

bit quantization) is shown in Fig. 9. 

The accuracy of the MobileViT-xxs network is 68.42% for 

FP32 implementation. The network accuracy at 12-bit 

quantization is acceptable when using the baseline softmax 

method in [19] with 0.9% accuracy loss, but declines severely 

at 8-bit quantization with 6.68% accuracy loss. This is because 

radical network quantization degrades the network accuracy, 

and the low-precision softmax method in [19] worsens the 

accuracy degradation caused by radical quantization. The 

methods in [20] and [21] can ensure accuracy at 12-bit 

quantization with 0.54% and 0.29%, respectively. However, 

their accuracies are not acceptable at 8-bit quantization with 

2.47% and 1.3% degradation, respectively. The proposed ISP 

ensures 68.35% network accuracy at 12-bit quantization with 

nearly no degradation, and exhibits only 0.81% accuracy loss at 

8-bit quantization, indicating the efficiency of our ISP even 

under aggressive quantization scenarios. Compared with the 

state-of-the-art works  [19], [20], and [21], our ISP achieves 

5.87%, 1.66%, and 0.97% network accuracy improvements in 

8-bit quantization, and 0.9%, 0.47%, and 0.22% network 

accuracy improvements in 12-bit quantization, respectively. 

B. Evaluation of SFZD 

Exploiting the sparsity derived from the combination of 

softmax and quantization can further enhance hardware energy 

efficiency by eliminating redundant operations. To achieve this, 

we employ linear quantization to perform fixed-point 12-bit and 

8-bit quantization on the MobileViT-xxs network, respectively. 

To accommodate the proposed SFZD algorithm, we fix the min 

and max values when quantizing the softmax function. Among 

the existing works, only [19] features the sparsity detection for 

the softmax function. We compare the proposed SFZD with 

[19] in terms of sparsity utilization, which is the ratio of the 

sparsity utilized by the algorithm and the sparsity provided by 

the network quantization. The results are listed in Table I.  

TABLE I 

SPARSITY UTILIZATION RATIO OF DIFFERENT METHODS  

MobileViT-xxs JSSC 2023 [19] Ours 

12b 42.49% 100% 

8b 30.31% 100% 

The sparsity extraction method of [19] is based on (19), 

which fails to fully utilize the sparsity offered by quantized 

softmax. This is because [19] overlooks the sparsity brought by 

∑ 𝑒𝑥𝑗−𝑥𝑚𝑎𝑥𝑁
𝑗=0  , which accounts for a substantial role in the 

softmax sparsity assessment. The proportion of sparsity 

generated by ∑ 𝑒𝑥𝑗−𝑥𝑚𝑎𝑥𝑁
𝑗=0  to the overall sparsity increases as 

the size of Transformer-based networks decreases. 

Consequently, the efficiency of the sparsity detection method in 

[19] deteriorates in small sized networks. Our method takes 

𝑙𝑛 (𝑆) into consideration and improves the sparsity utilization 

ratio by 2.4× and 3.3× under 12-bit and 8-bit quantization, 

respectively. The proposed SFZD not only eliminates redundant 

calculations, but also reduces the hardware area cost. SFZD 

constrains the input range and reduces the bit width for Stage1 

and Stage3 in Fig. 2, which saves ~18% area in hardware. 

Furthermore, SFZD ensures a fixed and identical input range 

for Stage1 and Stage3, which allows for the reuse of the same 

hardware modules and leads to further savings of ~30% area. 

After evaluation, SFZD only occupies 2.5% hardware area in 

the whole architecture while contributing 19.2% power savings. 

C. Hardware Implementation Results 

To thoroughly analyze our proposed SoftAct architecture, 

two versions are implemented in Verilog HDL: fix-point 16b 

and fix-point 32b (the bit width of the partial sum in network 

processing). The precision of the 16b version is consistent with 

Tables I and Fig. 9, where the bit width of partial sum is also 

16b. Due to the increased bit width, the 32b version has a better 

precision than the 16b version by observing the MAE and MSE. 

We synthesize these designs by Cadence Genus using the 

TSMC 28-nm CMOS technology, then perform gate-level 

simulations based on 12b quantized MobileViT-xxs data by 

using Cadence NC-Sim. The VCD (value change dump) files 

are dumped for power analysis. The results of our proposed 

SoftAct are listed in Table II. To evaluate the hardware 

architecture, we use three metrics: area efficiency (AE), energy 

efficiency (EE), and overall efficiency (OE). The definitions for 

Throughput and OE are 

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝐹𝑟𝑒𝑞 × 𝑁𝑈𝑀.         (24) 

 𝑂𝐸 = 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡/(𝐴𝑟𝑒𝑎 × 𝑃𝑜𝑤𝑒𝑟).         (25) 

The Freq is the running frequency and NUM is the number of 

inputs or outputs in hardware. In the 16b and 32b versions, the 

hardware performance of the SoftAct is evaluated at two 

operating frequencies: the maximum frequency and a frequency 

of 500 MHz. The lower the bit width, the higher the maximum 

frequency and the better the hardware metrics can be achieved. 

For example, at 500 MHz, the 16b SoftAct outperforms the 32b 

version in AE, EE, and OE by factors of 1.6×, 2.1×, and 3.4×, 

respectively.  

The proposed SoftAct architecture can support both softmax 

and low-bit width Swish functions, which are inseparable due 

to the high reconfigurability of the architecture. Alternatively, 

the existing works only support the softmax function. To 

evaluate the performance of SoftAct, we perform comparisons 

with the state of the art optimized for the softmax function. 

According to the layout shrinking rules of the foundries (for 65 

nm, 40 nm, and 28 nm), the area is reduced by around 5.4× 

(2.32) with the technology scaled from 65 nm to 28 nm and 

reduced by around 2× (1.42) with the technology scaled from 40 

nm to 28 nm. The supply voltage is reduced from 1.2 V to 0.9 

V with the technology scaled from 65 nm to 28 nm and reduced 

from 1.1 V to 0.9 V with the technology scaled from 40 nm to 

28 nm. With the area and supply voltage scaling, the area 

efficiency, energy efficiency, and overall efficiency of [13], 

[32], and [34] can be approximately scaled into 28-nm 

technology node as shown in Table II, which demonstrates that 

SoftAct achieves the highest frequency and OE among the 
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evaluated works. A 16b fixed-point softmax is implemented in 

[32], which has lower power consumption than our proposed 

SoftAct. However, our SoftAct achieves 51.1× and 5.5× 

improvement in AE and OE, respectively, compared to [32]. 

[21] only considers the cell area without the interconnect area. 

Meanwhile, there is no power information in [21]. The cell area 

of our 16b SoftAct is 2.157×10-3 mm2 under maximum 

frequency 1.85 GHz, with corresponding 858.6 G/(s·mm2) AE, 

which is 1.2× better than [21]. The design in [13] comprises a 

floating-point 12b softmax unit. Although with a smaller bit 

width than our SoftAct, the area and power consumption of the 

softmax unit in [13] are still significantly higher due to the 

floating-point unit. [33] incorporates a 16b fixed-point softmax 

module operating at a lower frequency than our SoftAct. Note 

that the power consumptions given in both [13] and [33] are 

derived from the entire network. If these works are analyzed 

exclusively for the softmax function, the power consumption, 

EE, and OE would appear less favorable. This is because the 

softmax unit is possibly in the idle state for most of the time 

during full network processing, leading to low power 

consumption of the softmax unit. Despite these circumstances, 

with our 16-bit SoftAct, we attain a higher operating frequency, 

with 31× and 6.7× better AE as well as 1435× and 9× OE 

compared to [13] and [33], respectively. We have implemented 

the softmax structure of [19] in Verilog HDL using the same 

28-nm CMOS technology and obtained the design metrics of 

the softmax of [19]. The design in [19] supports softmax and 

sparsity detection. However, the lack of input data constraint 

necessitates high-segment linear fitting to ensure precision, 

leading to high area consumption. Compared to [19], our 

approach increases AE by 2.2×, EE by 1.9×, and OE by 4.2× 

with higher softmax precision and network accuracy. [34] 

proposes a 32b fix-point softmax architecture, whose area and 

power consumption are unfavorable. Our proposed 32b SoftAct 

architecture can achieve an operating frequency of up to 1.56 

GHz, ensuring better area and power consumption, with an 

improved OE of 174× compared to [34].  

As shown in Fig. 10, under the maximum frequency, the 

proposed 16-bit SoftAct architecture improves the area 

efficiency by 31×, 53.2×, 20.2×, 153.2×, and 6.7×, compared 

with [13], [34], [33], [32], and [19], respectively. Meanwhile, 

to evaluate the performance in terms of area and power 

consumption, the overall efficiency is compared. The proposed 

16-bit SoftAct architecture improves the overall efficiency by 

1435×, 532.8×, 6.2×, 3.8×, and 2.9×, compared with [13], [34], 

[33], [32], and [19], respectively. 

 

Fig. 10. The area efficiency and overall efficiency improvement compared with 

the state of the art. 

TABLE II 

PERFORMANCES COMPARISON OF THE DIFFERENT HARDWARE ARCHITECTURES 

 ICSICT 

2018 [34] 

GLSVLSI 

2019 [32] 

TCAS-II 

2020 [21] 

HPCA 

2021 [13] 

JSSC 

2022 [33] 

JSSC# 

2023 [19] 
SoftAct 

Technology 65 nm 65 nm 28 nm 40 nm 28 nm 28 nm 28 nm 

Function Softmax Softmax Softmax Softmax Softmax Softmax Softmax / Low-bit width Swish 

Sparsity NA NA NA NA NA Softmax Softmax / Low-bit width Swish 

Voltage [V] 1.2 1.2 0.9 1.1 1.0 1.1 0.9 

BW/NUM 32/1 16/1 16/8 FP12/8 16/16 16/1 16/1 32/1 

Frequency 
[GHz] 

1 0.5 1.64 1 0.24 0.51 0.5 1.85 0.5 1.56 

Area 

[mm2] 
0.445 0.64 

18.39 

×10-3* 
0.786 0.12 

5.297 

×10-3 

2.326 

×10-3 

2.872 

×10-3 

3.746 

×10-3 

4.453 

×10-3 

Power Consumption 
[mW] 

333 0.82 NA 496.6† 1.06† 1.50 0.80 3.46 1.66 5.76 

Throughput 

[G/s] 
1 0.5 13.12 8 3.84 0.51 0.5 1.85 0.5 1.56 

Scaled Area Efficiency⁑ 
[G/(s·mm2)] 

12.11 4.21 713.35* 20.78 31.90 96.28 214.96 644.85 133.48 350.33 

Scaled Energy Efficiency⁑ 

[G/(s·mW)] 
2.88×10-2 5.84 NA 4.91×10-2† 3.61† 0.34 0.63 0.54 0.301 0.27 

Scaled Overall Efficiency⁑ 
[G/(s·mm2·mW)] 

0.35 49.19 NA 0.13† 30.00† 64.14 270.05 186.48 80.38 60.82 

BW: Bit width. NUM: Number of inputs or outputs. ‘’ represents the maximum frequency. ‘*’ represents the cell area without the interconnect area.  

‘†’ means the power consumption is obtained from the simulation of the entire network. If only the softmax data are processed, the results are worse. 

‘#’ represents the reimplemented work. ‘⁑’ Scaled to 28-nm technology node, according to “𝐸𝑛𝑒𝑟𝑔𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∝ 1/(𝐴𝑟𝑒𝑎 × 𝑉𝐷𝐷
2 ) ” derived in [35]. 
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VI. CONCLUSION 

In this paper, an algorithm-hardware co-designed SoftAct 

architecture is proposed to achieve various nonlinear functions 

in convolution and attention co-designed Transformer-based 

networks. To improve the softmax precision in hardware 

implementation, an improved softmax algorithm with penalties 

is proposed for log-sum-exp softmax. A stage-wise full zero 

detection method is introduced to skip the redundant 

computation in log-sum-exp softmax. A compact and 

reconfigurable hardware architecture with a symmetric 

detection and storage structured linear fitting module is 

developed to achieve high precision and multiple nonlinear 

functions. Benchmarked with the MobileViT-xxs network 

classifying the ImageNet-1k dataset, the proposed improved 

softmax with penalties algorithm achieves up to 99.29% MAE 

and 99.77% MSE reductions in grouped set random test, and 

5.87% network accuracy improvement compared with the 

evaluated works. The proposed SoftAct architecture is 

implemented in the TSMC 28-nm CMOS technology, 

achieving up to 153.2× the area efficiency and 1435× overall 

efficiency improvements among the state of the art, thereby 

providing an attractive option for Transformer-based network 

accelerators. 
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